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Abstract

Ever since the birth of data envelopment analysis (DEA) the ques-
tion of ranking the decision making units (DMUs) has been one of the
focal points of research in the area. Among several other approaches,
promising attempts have been made to marry DEA with the analytic
hierarchy process (AHP) method. Keeping the idea of using DEA-
based pairwise comparisons between the DMUs, as proposed in some
DEA-AHP variants published in the literature, a new method is pre-
sented for combining DEA with techniques for eliciting weights from
pairwise comparison matrices. The basic idea is to apply a variant
of the CCR problem instead of the classic one. The ensuing scores
are then utilized to build a nonreciprocal pairwise comparison matrix
which serves as the basis of eliciting the ranking values of the DMUs.
Main advantage of this new method is the wider range of the result-
ing ranking values which subsequently leads to better distinction be-
tween the DMUs. Beside the eigenvector method, optimization based
methods are also considered for eliciting the ranking values from the
nonreciprocal pairwise comparison matrix. Numerical examples are
supplied for comparing the proposed techniques.
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1 Introduction

Data envelopment analysis (DEA) is a very powerful tool for the efficiency
evaluation of decision making units (DMUs) with multiple inputs and out-
puts. One of the main advantages of this non-parametric linear programming
method is its capability of discerning the efficient DMUs by creating an effi-
ciency frontier as based on the observed data and thus not requiring any a
priori information about the relationship between the inputs and outputs.

One of its shortcomings, however, is its inability to fully rank the decision
making units. Ever since it has been created by Charnes, Cooper and Rhodes
[9] on the basis of the idea of Farrel [18], the question of full ranking has been
in the frontline of research.

A multitude of different DEA variants with diverse backgrounds have been
developed with the aim of solving this problem. Perhaps the most widely
known and applied ranking method is the super-efficiency DEA model. De-
veloped by Andersen and Petersen [3], this technique creates the best practice
frontier first without evaluating DMU0 and then with its inclusion. Next the
extent to which the envelopment frontier becomes extended is investigated.
Several extensions and variants of this method are available, e.g. [24, 29, 28].
The problem with super-efficiency DEA is that under certain conditions in-
feasibility occurs which limits the applicability of the technique. (For details
see [35]).

Another approach is that of cross-efficiency introduced by Sexton et al.
[37] and extended by Doyle and Green [15] where the individual decision
making units are not only assessed by their own weights but the weights of
all the other DMUs are also incorporated into the value judgement. This
score is more representative of efficiency than the traditional DEA-score but
at the same time the connection to the multiplier weights is lost [2].

Torgensen et al. [40] investigate the extent to which the different DMUs
are peers to each other and through this benchmarking procedure is full
ranking achieved.

If developed purposefully, the utilization of common weights can con-
tribute to reaching a full ranking as well. The main goal of Wang et al.
[41] is to introduce a minimum weight restriction and as a side effect, com-
mon weights and then, full ranking is also achieved. Common weights are
also achieved by different multivariate statistical analyses and these can also
lead to full ranking. For instance, canonical correlation, linear discriminant
analysis or the discriminant analysis of ratios can also be employed [2].

Another way of approaching the question of full ranking is taking into
account the slacks present in the slack-adjusted DEA model. Bardhan et
al. [4] rank inefficient units this way, Tone [39] composes a method that can
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rank all the DMUs. Du et al. [16] create an extension to this model and
Chen and Sherman [10] also use slacks for the development of a non-radial
super-efficiency DEA model.

Wen and Li [42] aim to utilize fuzzy information in data envelopment
analysis and as a side effect full ranking is achieved.

Multi-criteria decision making methods can also be combined with DEA
to provide full ranking. Sinuany-Stern et al. [38] integrate analytic hierarchy
process with DEA: the pairwise comparison matrix of AHP is created through
the objective evaluation of pairs of DMUs by DEA.

The method developed by Sinuany-Stern et al. [38] has been applied for
instance by Guo et al. [21] for supply chain evaluation. Royendegh and
Erol [33] also build upon the idea of [38] but extend the method to analytic
network process (ANP), the more generalized form of AHP. Zhang et al.
[44] combine DEA with AHP for 4PL vendor selection but their approach is
different. After the construction of an input-output structure AHP is utilized
for a preliminary data analysis with the help of which the importance of the
different criteria is determined. The results of the AHP are then used as
preferential information in a modified DEA model. A pairwise comparison
matrix is created with the evolving efficiency values and then AHP is applied
again for the evaluation of the matrix.

The authors have found the work of Sinuany-Stern et al. [38] particularly
inspiring and appreciating the results therein, wish to further improve the
original method by enabling the pairwise comparison matrix to be nonre-
ciprocal which contributes to the possibility of a more accurate evaluation.
Even more so, since in the course of applying DEA to the case of logistic
centres [30], it has been revealed that the thumb rule in connection with
the number of DMUs to be found in the literature is very difficult to be ad-
hered to. According to this rule the number of observations should be three
times greater than the number of the inputs plus outputs; and the number
of DMUs should be equal or larger than the product of the number of inputs
and outputs [5]. Some authors are less strict in their conduct, Wu and Goh
[43] for example argue that the number of DMUs should only be minimally
two times as much as the sum of the number of inputs and outputs. However,
under certain conditions even this requirement might be difficult to satisfy.

The new technique proposed in this article intends to provide a solution
for both the problem of full ranking and the difficulty inherent in the thumb
rule cited above. Nonetheless, it is not in the scope of the present paper to
explore and compare all the DEA-connected techniques aimed at resolving
the question of full ranking, or even to measure up the proposed method to
all the rest of existing solutions. It is its goal, however, to provide numerical
examples of its utilization, with a special attention to the cases presented in
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articles closely related to the technique at hand.
In Section 2, a variant of the CCR problem is proposed instead of the

classic one used in [38]. Easy ways for computing the related reciprocal and
nonreciprocal pairwise comparison matrices are also presented. Section 3 ad-
dresses the issue how to elicit ranking weights from the nonreciprocal pairwise
comparison matrix obtained by the new approach. Beside the eigenvector
method used in [38], the logarithmic least squares method and the weighted
least squares method are also considered. In Section 4, numerical examples
are supplied for comparing the proposed techniques.

2 DEA-like pairwise comparisons of the de-

cision making units

Let us assume that there are n decision making units each producing s dif-
ferent outputs from m different inputs. Xij is the input i of unit j, while Yrj

is the output r of unit j. We assume that all Xijs and Yrjs are positive. In
the original approach of Sinuany-Stern et al. [38] traditional DEA runs are
executed for any pair of DMUs, as if only these two decision making units
existed. The runs are based on the DEA CCR model adapted to the case of
two DMUs. For this let A and B be a pair of units and let us consider the
CCR model as if only these two units existed:

FAB = max
s∑

r=1

urYrA

s.t.
m∑
i=1

viXiA = 1,

s∑
r=1

urYrA ≤ 1,

s∑
r=1

urYrB −
m∑
i=1

viXiB ≤ 0,

ur ≥ 0, r = 1, . . . , s, vi ≥ 0, i = 1, . . . ,m.

(1)

In [38] the notation EAA is used for FAB. We think however that FAB is a
more appropriate notation since both units appear in it, and the precedence
of A over B means that it is the efficiency of A which is being evaluated
by using the two units. The change from E to F is necessary in order to
avoid its confusion with another efficiency value later on. Consider another
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problem being in a close relation to (1):

F̂AB = max
s∑

r=1

urYrA

s.t.
m∑
i=1

viXiA = 1,

s∑
r=1

urYrB −
m∑
i=1

viXiB = 0,

ur ≥ 0, r = 1, . . . , s, vi ≥ 0, i = 1, . . . ,m.

(2)

Comparing (2) with (1), the main difference between the two models becomes
clearly visible: the second constraint of (1) representing an upper bound for
the objective function of (1) is omitted. The reason behind this is the basic
idea of the new model (2): the aim with the exclusion is to provide an
opportunity for a full comparison between the two decision making units,
without limiting the evolving score. If that constraint is left untouched,
the resulting efficiency value will very frequently be the unity; and thus real
distinction is not achieved between the two DMUs. A similar idea of omitting
the upper bound on the objective function of (1) has already appeared in case
of the super-efficiency ranking techniques [2, 3] too.

A further minor remark concerns the inequality in the third constraint of
(1) which changes to equality in (2). This can be explained by the following:
should we leave the inequality in (2), it would clearly hold as an equality for
any optimal solution of (2). Since we shall only be interested in the optimal
solutions of (2), we can consider that constraint as an equality.

Proposition 1:

F̂AB = max
(r,i)

YrA/XiA

YrB/XiB

= max
r=1,...,s

YrA

YrB

· max
i=1,...,m

XiB

XiA

(3)

and
FAB = min{1, F̂AB}. (4)

Proof: Problem (2) has a finite optimal solution taken at a basic feasible
solution. It is clear from the special structure of (2) that any basic feasible
solution has exactly two positive variables: one from the vi and one from the
ur variables. Given a basic feasible solution of (2), let i0 and r0 denote the
indices of those positive variables. It is easy to see that

vi0 = 1/Xi0A and ur0 = vi0Xi0B/Yr0B =
Xi0B/Xi0A

Yr0B

,
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and the value of the objective function is

Yr0A/Xi0A

Yr0B/Xi0B

. (5)

Finding the optimal basic solution means finding the pair (r0, i0) with the
maximal value of (5). This implies (3) directly.

Keeping in mind the upper bounding role of the second constraint of (1),
it is evident that FAB is equal to F̂AB if F̂AB ≤ 1, and FAB = 1 otherwise. �

In essence, F̂AB is the resulting value of the pairwise comparison, it rep-
resents the efficiency of A in comparison with B. According to (3), it can also
be interpreted as the product of an output and an input efficiency value. The
first is the maximal output ratio of A compared with B, and the second one is
the maximal input ratio of B compared with A. This can also be interpreted
in a way that in this comparison that single input and that single output will
be chosen which is most satisfying from unit A’s point of view. It is clear
from (3) that this pairwise comparison is not reciprocal, i.e. F̂AB = 1/F̂BA

does not necessarily hold.
The original approach proposed in [38] determines FAB in the first step,

then, in the second step a cross evaluation of unit B is performed based on
the idea of [32]:

EBA = max
s∑

r=1

urYrB

s.t.
m∑
i=1

viXiB = 1,

s∑
r=1

urYrB ≤ 1,

s∑
r=1

urYrA − FAB

m∑
i=1

viXiA = 0,

ur ≥ 0, r = 1, . . . , s, vi ≥ 0, i = 1, . . . ,m.

(6)

Actually, EBA is the optimal cross evaluation of unit B while the output/input
ratio of unit A is fixed at FAB. Using a similar reasoning as with (1) and (2),
and omitting the second constraints of (2), i.e. an upper bound restriction
for the objective function, the following auxiliary problem can be established
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for (6):

ÊBA = max
s∑

r=1

urYrB

s.t.
m∑
i=1

viXiB = 1,

s∑
r=1

urYrA − FAB

m∑
i=1

viXiA = 0,

ur ≥ 0, r = 1, . . . , s, vi ≥ 0, i = 1, . . . ,m.

(7)

The following Proposition 2 can be proved in the same way as Proposition
1, only the constant FAB appearing in the second constraint of (7) requires
some extra attention. We leave the proof to the reader.

Proposition 2:

ÊBA = FAB ·max
(r,i)

YrB/XiB

YrA/XiA

= FAB · max
r=1,...,s

YrB

YrA

· max
i=1,...,m

XiA

XiB

(8)

and
EBA = min{1, ÊBA}. (9)

�

Collating (8) and (3), changing the role of A and B in the latter, we
obtain

Corollary 1:

ÊBA = FABF̂BA. (10)

�

Proposition 3: If FAB < 1, then EBA = 1.

Proof: From (4) and FAB < 1, we get FAB = F̂AB. Then, from (3) and (8),

ÊBA = max
(r,i)

YrA/XiA

YrB/XiB

·max
(r,i)

YrB/XiB

YrA/XiA

=
max(r,i)

YrA/XiA

YrB/XiB

min(r,i)
YrA/XiA

YrB/XiB

≥ 1.

From (9), we get EBA = 1 immediately. �

As a consequence of Proposition 3, if FAB < 1, then it is unnecessary to
solve problems (6) or (7), we get EBA = 1 directly.
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Proposition 4: If there exist (r1, i1) and (r2, i2) such that

Yr1A/Xi1A ≥ Yr1B/Xi1B and Yr2A/Xi2A ≤ Yr2B/Xi2B,

then FAB = EBA = 1.

Proof: From (3) and (4), we obtain FAB = 1. Then, (8) implies ÊBA ≥ 1
thus EBA = 1. �

Remark 1: It is easy to see that the condition of Proposition 4 does not
hold if and only if

YrA/XiA < YrB/XiB for all (r, i) (11)

or
YrA/XiA > YrB/XiB for all (r, i). (12)

Remark 2: We have also pointed out in Propositions 1 and 2 that we do
not have to use any optimization software to obtain the optimal solution of
(1), (2), (6) and (7).

Since n DMUs are given, and the values FAB, F̂AB, EBA and ÊBA are
to be determined for all pairs A and B of the DMUs, we introduce the
following notations. Let DMU1,. . . , DMUn denote the decison making units.
Considering DMUj as A and DMUk as B, let Fjk = FAB, F̂jk = F̂AB, Ekj =

EBA and Êkj = ÊBA.

Sinuany-Stern et al. [38] construct an n×n matrix A = [ajk] of the entries

ajk =
Fjk + Ejk

Fkj + Ekj

, j, k = 1, . . . , n. (13)

The nominator of ajk is the sum of the efficiency evaluation and the cross
evaluation of DMUj in comparison with DMUk. The denominator can be
interpreted similarly by changing the role of j and k.

Clearly,
ajk > 0, j, k = 1, . . . , n, (14)

and
ajk = 1/akj, j, k = 1, . . . , n. (15)

An n × n matrix A with the properties (14) and (15) is called a pairwise
comparison matrix [34].

Constructing the pairwise comparison matrix A by (13) is, however, in
some cases problematic. Namely, if considering A as DMUj and B as DMUk
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and neither (11) nor (12) hold, then Fjk = Ekj = Fkj = Ejk = 1, conse-
quently, ajk = akj = 1. In some practical or randomly generated cases, it
is not very probable that the dominance of (11) or (12) holds. This may
lead to the phenomenon observed in some numerical examples applying the
approach of [38] that the pairwise comparison matrices constructed by (13)
comprise strikingly many 1 elements [21, 33, 38, 44]. The result 1 of a pair-
wise comparison means that the two DMUs cannot be considered as different.
Therefore, a large number of unities in the pairwise comparison matrix may
hinder the strict ranking of DMUs as the ranking weights elicited from the
pairwise comparison matrix may be identical or very close to each other.

In this paper, instead of using (13), we propose to construct an n × n
matrix A = [ajk] of the entries

ajk = F̂jk, j, k = 1, . . . , n. (16)

As mentioned earlier, F̂jk provides the opportunity to compare DMUj against
DMUk without limiting the score from above. It is undeniable that DMUj

is in a privileged position in the course of this comparison. It can also be
considered as a football match where DMUj has the home team’s advantage.

Of course, the role of DMUj and DMUk is reversed when the value akj = F̂kj

is determined, and thus a level playing field can be assured.
It was already pointed out that F̂AB and 1/F̂BA may be different, i.e. the

reciprocity property (15) does not necessarily hold for a matrix A constructed
by (16). Actually, matrix A of (16) is simply a positive matrix but we call it
nonreciprocal pairwise comparison matrix to indicate the context.

3 Eliciting weights from the nonreciprocal pair-

wise comparison matrix

After having constructed the pairwise comparison matrix A by (13), Sinuany-
Stern et al. [38] follow the standard AHP methodology [34]. By applying the
Eigenvector Method (EM), the maximal eigenvalue λmax and its correspond-
ing eigenvector wEM of

Aw = λw (17)

are determined. The real number λmax and the vector wEM are positive and
unique. In addition, λmax ≥ n, and λmax = n if and only if A is consistent,
i.e.

aijajk = aik for all i, j, k = 1, . . . , n.
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Having determined the vector wEM, the DMUs are ranked in the following
way. Rank 1 is assigned to the DMU with the maximal value of wEM

j , and
in decreasing order of wEM

j are the further ranks allocated to the remaining
DMUs.

In the standard AHP methodology, matrix A is assumed to be reciprocal.
The matrix A of (16) is however nonreciprocal. As far as the authors know
nonreciprocal matrices in a pairwise comparison context and the question of
how to elicit the weight vector w from them appeared first in [27]. Although
double wine testing is mentioned as a main example for the necessity of
relaxation of the reciprocity condition, further examples of application from
other fields of life have also been published in the literature.

The lack of reciprocity may even occur if the comparisons are performed
by the same person at different times. In [14] an experiment is reported.
Postgraduate students were asked to fill in the upper part of a pairwise
comparison matrix, where the items to be compared were in the scope of
their studies. Some weeks later, they were asked to fill in the lower part of
the PC matrix. It turned out that for none of the matrices obtained in this
way did the reciprocity property hold.

As mentioned in [23], nonreciprocal pairwise comparison matrices may
also appear when one compares financial assets denominated in different
currencies. Because of transaction costs, the resulting matrices are not re-
ciprocal, even if no subjectivity is involved.

The classical methods used in case of reciprocal pairwise comparison ma-
trices can also be extended to the nonreciprocal case in more or less direct
ways. EM can also be interpreted without the reciprocity condition since the
Perron-Frobenius and the Frobenius theorems, the mathematical bases of
the EM, do not require A to be reciprocal, see [36] for details. The property
λmax ≥ n does not necessarily hold for a nonreciprocal matrix A, thus, the
consistency index CI = (λmax−n)/(n−1) playing an important role in AHP
[34] may be negative. However, since the pairwise comparison matrices are
constructed from objective data in our case, we are not concerned about the
consistency of A.

The Eigenvector Method is not the only way to elicit ranking weights from
a pairwise comparison matrix. A group of approaches applies optimization
methods and proposes different ways for minimizing the difference between
A and consistent pairwise comparison matrices. The optimization methods
are based on the basic property that A is consistent if and only if

aij = wi/wj, i, j = 1, . . . , n,

where w is a positive n-vector and is unique after a normalization. Most of
the optimization approaches can be directly extended to the nonreciprocal
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case as well. If the difference to be minimized is measured in the least-squares
sense, i.e., with the Frobenius norm, then we get the Least Squares Method
(LSM) [11]:

min
∑n

i=1

∑n
j=1

(
aij − wi

wj

)2

s.t.
∑n

i=1wi = 1, wi > 0, i = 1, . . . , n.

(18)

Under special conditions, (18) can be transcribed into the form of a convex
optimization problem and can be solved by simple local search techniques
[19, 20]. However, without the special conditions, problem (18) may be
a difficult nonconvex optimization problem with multiple local optima and
even with multiple isolated global optimal solutions [25, 26].

In order to elude the difficulties caused by the possible nonconvexity of
(18), several other, more easily solvable problem forms are proposed to derive
priority weights from a pairwise comparison matrix. The Weighted Least
Squares Method (WLSM) [6, 11] in the form of

min
∑n

i=1

∑n
j=1 (aijwj − wi)

2

s.t.
∑n

i=1wi = 1, wi ≥ 0, i = 1, . . . , n

(19)

involves a convex quadratic optimization problem whose unique optimal so-
lution is easy to obtain.

The Logarithmic Least Squares Method (LLSM) [12, 13] in the form

min
∑n

i=1

∑n
i=1

[
log aij − log

(
wi

wj

)]2
s.t.

∏n
i=1 wi = 1, wi > 0, i = 1, . . . , n

(20)

is based on an optimization problem whose unique optimal solution, in the
reciprocal case, is the geometric mean of the rows of matrix A. This result
was extended to the nonreciprocal case in [27], and the following optimal
solution to (20) was obtained:

wi =
2n

√∏n
j=1 aij∏n
j=1 aji

, i = 1, . . . , n. (21)

In this paper, for the numerical experiment, we used the EM, LLSM
and WLSM approaches to elicit ranking weights from pairwise comparison
matrices. For further approaches, see [7, 8, 17, 19] and the references therein.

Of course, the different approaches may result in different weight vectors
w, and consequently, in different ranking orders of some DMUs. This well-
known phenomenon occurred in the following numerical examples, too.
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4 Numerical examples

We compared the original AHP/DEA ranking methodology proposed in [38]
with the new method presented in this paper. The original and three vari-
ants of the new method were tested in parallel. The latter differ in the way
how the weight vector w, used for ranking the DMUs, is elicited from the
appropriate pairwise comparison matrix. EM1 – the original method – ap-
plies the Eigenvector Method on the reciprocal pairwise comparison matrix
of elements yielded by (13), while EM2, LLSM and WLSM apply the Eigen-
vector Method, the Logarithmic Least Squares Method and the Weighted
Least Squares Method, respectively, on the nonreciprocal pairwise compari-
son matrix F̂ .

Example 1.

Example 1 is the nursing home example developed in [37]. This exam-
ple was also used in the review paper [2] to compare the majority of the
techniques surveyed there. The example comprises six DMUs, two inputs
and two outputs: staff hours per day (StHr) and supplies per day (Supp) as
inputs, and total Medicare plus Medicaid reimbursed patient days (MCPD)
and total private patient days (PPD) as outputs. The raw data are presented
in Table 1.

Table 1 Input and output data of Example 1
DMU Inputs Outputs

StHr Supp MCPD PPD
A 150 0.2 14000 3500
B 400 0.7 14000 21000
C 320 1.2 42000 10500
D 520 2.0 28000 42000
E 350 1.2 19000 25000
F 320 0.7 14000 15000

By applying (2), we obtain the matrix F̂ :

F̂ =


1.00000 3.50000 2.00000 5.00000 4.42105 3.50000
2.25000 1.00000 3.42857 1.42857 1.44000 1.40000
1.40625 3.75000 1.00000 2.50000 2.41776 3.00000
3.46154 1.53846 2.46154 1.00000 1.13077 1.72308
3.06122 1.55102 2.38095 1.13095 1.00000 1.52381
2.00893 1.25000 2.44898 1.42857 1.26316 1.00000

 .
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Since every element of F̂ is greater than or equal to 1, from (4), we get
Fjk = 1, j, k = 1, . . . , n. Then, from (10), we obtain Êkj ≥ 1, and from
(9), Ekj = 1 for all j, k = 1, . . . , n. Consequently, the reciprocal pairwise
comparison matrix A constructed by (13) consists only of unity elements.
This matrix is consistent, the maximal eigenvector consists of equal weights,
and all DMUs get the ranking 1-6 as shown in Table 2 in the columns under
EM1.

Methods EM2, LLSM and WLSM were run on the nonreciprocal pairwise
comparison matrix F̂ . The results are also displayed in Table 2. Although a
deeper numerical comparison of these methods against other ranking meth-
ods is beyond the scope of this paper, it is worth noting that the ranking by
EM2 is the same as that of the super-efficiency approach in [2], moreover, the
correlation of the vector of weights by EM2 to that by the super-efficiency
technique is 0.99329. In the case of LLSM and WLSM, the ranking orders are
the same only in the first two positions but the correlations are still 0.97891
and 0.97337, respectively.

Table 2 Weights and ranking of the DMUs in Example 1
DMU Weights Ranking

EM1 EM2 LLSM WLSM EM1 EM2 LLSM WLSM
A 0.16667 0.23760 0.19755 0.19196 1-6 1 1 1
B 0.16667 0.14988 0.15839 0.15899 1-6 4 5 5
C 0.16667 0.17439 0.16565 0.16947 1-6 2 2 2
D 0.16667 0.15985 0.16437 0.14730 1-6 3 4 6
E 0.16667 0.14951 0.16438 0.16461 1-6 5 3 4
F 0.16667 0.12877 0.14966 0.16767 1-6 6 6 3

Example 2.

The raw data of Example 2 is from Table 3 of [38], and is shown in Table 3
below.

Table 3 Input and output data of Example 2
DMU Inputs Outputs

X1 X2 Y1 Y2

A 50 55 10 56
B 130 60 12 78
C 68 96 45 9
D 45 30 35 18
E 5 3 99 3
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By applying (2), we obtain the matrix F̂ :

F̂ =


1.00000 2.16667 10.86061 2.80000 1.86667
1.27679 1.00000 13.86667 2.16667 1.30000
3.30882 7.16912 1.00000 0.85084 0.22059
6.41667 8.42593 6.40000 1.00000 0.66667

181.50000 214.50000 70.40000 28.28571 1.00000

 . (22)

The reciprocal pairwise comparison matrix of the elements (13) is

A =


1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 0.85084 0.22059
1.00000 1.00000 1.17531 1.00000 0.66667
1.00000 1.00000 4.53333 1.50000 1.00000

 . (23)

Two versions of Example 2 were solved in [38]. In the first one only
four DMUs, Unit A to Unit D, were considered. The matrices F̂ and A
corresponding to this case can be easily obtained by taking the 4× 4 upper-
left submatrix of (22) and (23), respectively. The weights and the ranking
of the DMUs in the case with four DMUs are shown in Table 4. The second
version of Example 2 is with five DMUs. The corresponding weights and
ranking can be found in Table 5.

Table 4 Weights and ranking of the DMUs in Example 2 with four DMUs
DMU Weights Ranking

EM1 EM2 LLSM WLSM EM1 EM2 LLSM WLSM
A 0.24980 0.23732 0.26086 0.22924 2-3 3 2 2
B 0.24980 0.24654 0.20025 0.11203 2-3 2 3 3
C 0.24010 0.19087 0.14399 0.04622 4 4 4 4
D 0.26031 0.32527 0.39490 0.61251 1 1 1 1

Table 5 Weights and ranking of the DMUs in Example 2 with five DMUs
DMU Weights Ranking

EM1 EM2 LLSM WLSM EM1 EM2 LLSM WLSM
A 0.19057 0.06436 0.07302 0.00538 2-3 2 3 4
B 0.19057 0.05037 0.05606 0.00451 2-3 3 4 5
C 0.14070 0.02515 0.04031 0.01349 5 5 5 3
D 0.17608 0.04872 0.11055 0.03955 4 4 2 2
E 0.30208 0.81140 0.72007 0.93708 1 1 1 1
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In both versions, methods EM2, LLSM and WLSM yield full ranking
orders although they are different in several positions. It is also a striking
property of the methods based on the nonreciprocal pairwise comparison
matrix F̂ that the weights are more distinguished. The largest weights are
significantly larger and the smallest weights are significantly smaller than
those of EM1. Also, it is worth observing how the favorable input and output
values of DMU E are reflected in the corresponding weights in Table 5.

Example 3.

Example 3 comes from [21] and the raw data are given in Table 6.

Table 6 Input and output data of Example 3
DMU Inputs Outputs

X1 X2 X3 Y1 Y2 Y3

DMU1 15 15 0.05 0.80 0.800 0.42
DMU2 70 25 0.10 0.90 0.900 0.53
DMU3 45 16 0.07 0.96 0.885 0.47
DMU4 40 30 0.12 0.85 0.750 0.32
DMU5 35 25 0.11 0.75 0.845 0.44
DMU6 60 18 0.15 0.85 0.755 0.25
DMU7 55 20 0.08 0.70 0.850 0.51
DMU8 30 12 0.09 0.95 0.700 0.46

The nonreciprocal pairwise comparison matrix F̂ is obtained by (2), and
the reciprocal A by (13):

F̂ =



1.00000 4.14815 2.71186 3.50000 2.48889 6.72000 4.19048 2.28571
0.75714 1.00000 0.78936 1.98750 1.32500 3.18000 1.02857 1.15714
1.12500 1.66667 1.00000 2.75391 2.01143 4.02857 1.71429 1.62551
0.53125 1.65278 0.99609 1.00000 1.03889 1.92000 1.66964 0.80357
0.63375 1.87778 1.22760 1.65000 1.00000 3.01714 1.68367 1.03469
0.88542 1.31173 0.78704 1.67778 1.57407 1.00000 1.34921 0.71905
0.91071 1.22470 0.94947 2.39062 1.59375 3.82500 1.00000 1.36607
1.48437 2.46296 1.48437 3.59375 2.63889 3.68000 2.48810 1.00000


,
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A =



1.00000 1.32075 1.00000 1.88235 1.57791 1.12941 1.09804 1.00000
0.75714 1.00000 0.78936 1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.26685 1.00000 1.00392 1.00000 1.27059 1.05322 1.00000
0.53125 1.00000 0.99609 1.00000 1.00000 1.00000 1.00000 0.80357
0.63375 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.88542 1.00000 0.78704 1.00000 1.00000 1.00000 1.00000 0.71905
0.91071 1.00000 0.94947 1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 1.24444 1.00000 1.39073 1.00000 1.00000


.

The weights and the ranking orders obtained by the tested methods are
as follows:

Table 7 Weights and ranking of the DMUs in Example 3
DMU Weights Ranking

EM1 EM2 LLSM WLSM EM1 EM2 LLSM WLSM
DMU1 0.15290 0.22575 0.21761 0.26630 1 1 1 1
DMU2 0.11616 0.09546 0.09978 0.08828 6 6 6 6
DMU3 0.13279 0.13641 0.14839 0.15489 3 3 3 3
DMU4 0.11203 0.08305 0.08474 0.07254 8 8 7 7
DMU5 0.11729 0.10275 0.10874 0.10563 5 5 5 4
DMU6 0.11391 0.08334 0.07143 0.04668 7 7 8 8
DMU7 0.12172 0.11261 0.10932 0.09334 4 4 4 5
DMU8 0.13318 0.16063 0.16001 0.17233 2 2 2 2

The ranking orders by EM1, EM2 and LLSM coincide in the first six
positions. WLSM renders a further rank reversal in positions 4 and 5. The
greater separation in the weights by EM2, LLSM and WLSM, in compar-
ison to those by EM1, can be observed at this example, too. We mention
that the weight vector w published in [21] is w =(0.152, 0.117, 0.134, 0.112,
0.118, 0.114, 0.122, 0.133)T yielding the ranking (1,6,2,8,5,7,4,3). The slight
difference to the weights obtained by EM1 may come from a larger stopping
tolerance when computing the maximal eigenvector in [21]. But even a slight
difference implies a rank reversal for DMU3 and DMU8.

5 Conclusion

The method proposed in this paper seems to be a promising new tool for
ranking DMUs. It keeps the idea of using DEA-based pairwise comparisons
between the decision making units (DMUs), as was proposed originally in
[38]. The basic new idea is to apply a variant of the CCR problem instead of
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the classic one. The ensuing scores are then utilized to build a nonreciprocal
pairwise comparison matrix which serves as the basis of eliciting the ranking
values of the DMUs. Main advantage of this new method is the wider range
of the resulting ranking values which subsequently leads to better distinction
between the DMUs. This useful property was also confirmed by numeri-
cal examples. Beside the eigenvector method, optimization based methods
such as the logarithmic least squares method and the weighted least squares
method were also tested for eliciting the ranking values from the nonrecip-
rocal pairwise comparison matrix.

The numerical examples show that applying the new variant of the CCR
problem and eliciting ranking weights from nonreciprocal pairwise compari-
son matrices remedy some shortcomings of the original method proposed in
[38]. On the other hand, based upon the numerical examples, one cannot
give a definite answer to the question of which of the techniques tested for
eliciting ranking weights from nonreciprocal pairwise comparison matrices
is the best. This question is argued but is undecided in the more general
multiattribute decision making, too.
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[19] Fülöp J (2008) A method for approximating pairwise comparison matri-
ces by consistent matrices. Journal of Global Optimization 42:423-442
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