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Abstract: In several methods of multiattribute decision making, pairwise comparison matrices are ap-
plied to derive implicit weights for a given set of decision alternatives. A class of the approaches is
based on the approximation of the pairwise comparison matrix by a consistent matrix. In the paper this
approximation problem is considered in the least-squares sense. In general, the problem is nonconvex
and difficult to solve, since it may have several local optima. In the paper the classic logarithmic trans-
formation is applied and the problem is transcribed into the form of a separable programming problem
based on a univariate function with special properties. We give sufficient conditions of the convexity
of the objective function over the feasible set. If such a sufficient condition holds, the global optimum
of the original problem can be obtained by local search, as well. For the general case, we propose a

branch-and-bound method. Computational experiments are also presented.

1 Introduction

In the paper we consider the following optimization problem:

n n 2
. wj
min > (e -
Wy

i=1 j=1
n

s.t. Zwi =1, (1)
=1
w; >0, 1=1,...,n,

where A = [a;;] is an n X n pairwise comparison matrix, i.e.

1
aij>0 and Qjj = —, ,7=1,...,n. 2)
Qg5
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Pairwise comparison matrices play an important role in multiattribute decision-making, they are applied
to derive priorities or implicit weights for a given set of decision alternatives. Consider, as an example,
the prioritization of n alternatives. The priorities represent the relative importance of the alternatives. In
the approach based on pairwise comparisons, comparing any two alternatives ¢ and j, the decision-maker
assigns the value a;; which represents a judgement concerning the relative importance of the preference
of alternative 7 over alternative j. If alternative ¢ is preferred to alternative j, then a;; > 1. The positivity
property a;; > 0 and the reciprocity property a;; = 1/a;; of (2) are evident assumptions on the pairwise

comparisons.
A pairwise comparison matrix A is consistent if
aijaj = aik, 1, J,k=1,...,n.

It can be shown, see e.g. Saaty (1980), that a pairwise comparison matrix A is consistent if and only if

there exists a positive n-vector w such that
aij:wi/wj, i,jzl,...,n.

For a consistent pairwise comparison matrix A, the values w; serve as priorities or implicit weights of

the importance of alternatives.

In practice, the decision-maker’s evaluations a;; are frequently not consistent. In the case of an
inconsistent pairwise comparison matrix A, the evaluations a;; can be considered as perturbations of the

appropriate elements of an n x n consistent pairwise comparison matrix W = [w;;], where
ij:wz/wjv iajzlv"'7n7
and w = (wy,...,wy)T is the vector of the priority weights.

Several approaches exist regarding how to derive a suitable vector w from an inconsistent pairwise
comparison matrix A. Saaty (1977) proposed the Eigenvector Method in which w is the principal eigen-
vector of A. Another class of approaches is based on optimization methods and proposes different ways

for minimizing the difference between the matrices A and W'.

In the Least Squares Method presented by Chu et al. (1979), the matrix A is approximated by W in
the least-squares sense. This optimization problem can be written in the form (1) where the constraint
Z?:l w; = 1 serves for the normalization of the vector w. The objective function of (1) is the Frobenius
norm of the difference between the matrices A and W. Problem (1) is a difficult nonconvex optimization
problem with several possible local optima, moreover, with possible multiple isolated global optimal
solutions (Jensen 1983, 1984). Most of the methods proposed for solving (1) aim at finding local optimal
solutions. Chu (1997), and Farkas and Rézsa (2004) apply local search techniques of nonlinear program-

ming. Bozdki (2003, 2006), and Bozdki and Lewis (2005) transcribe (1) into the form of a multivariate



polynomial system, and apply resultant and homothopy methods for finding the roots. Farkas (2004),
Farkas and Rézsa (2001, 2004), and Farkas et al. (2003) use some techniques of linear algebra, and deal
with questions of non-uniqueness and data perturbation, as well. Carrizosa and Messine (2007) propose

an interval method for finding global optimal solutions of (1).

Some authors state that problem (1) has no special tractable form and is difficult to solve, see Chu
et al. (1979), Golany and Krees (1993), Mikhailov (2000), Choo and Wedley (2004). In order to elude
the difficulties caused by the possible nonconvexity of (1), several other, more easily solvable problem
forms are proposed to derive priority weights from an inconsistent pairwise comparison matrix. The
Weighted Least Squares Method (Chu et al. 1979, Blankmeyer 1987) applies a convex quadratic opti-
mization problem whose unique optimal solution is obtainable by solving a set of linear equations. The
Logarithmic Least Squares Method (De Jong 1984, Crawford and Williams 1985) is based on an opti-
mization problem whose unique optimal solution is the geometric mean of the rows of matrix A. The
Goal Programming Method (Bryson 1995), the Chi Square Method (Jensen 1984), the Singular Value
Decomposition (Gass and Rapcsdk 2004), and the idea of using Support Vector Machines (Carrizosa

2006) are further approaches.

In the paper we focus on problem (1) and its equivalent forms. In Section 2 the classic logarithmic
transformation is applied and the problem is transcribed into the form of a separable programming prob-
lem based on a class of univariate functions. Some special properties of these univariate functions are
investigated, too. In Section 3 we give sufficient conditions for the global optimality of a local optimal
solution. When such a sufficient condition holds, the global optimum of (1) can be obtained by local
search. In Section 4 we propose a branch-and-bound method for solving (1) in the general case. Some

computational experiments are presented in Section 5.

2 Transforming the Least Squares problem into a separable program-

ming form

Instead of the normalization constraint » ;- ; w; = 1 used in (1), we apply the normalization w,, = 1,

and write (1) into the equivalent form

n o n Wi 2
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min = —
5 (- t)
=1 j=1
st wp =1, 3)
wl>0, Z:L,n—l

Then, using the classic logarithmic transformation

ti=logw;, i=1,...,n, 4)



and the reciprocity property (2), problem (3) can be written into the equivalent form of the unconstrained

problem
. nl , 2 . 2
min ((etl —ain)” + (e71 = 1/ain) ) +
i=1
n—2 n—1 9 9 (5)
> 2 <(€t"_t" —aij)” + (e7"Y — 1/ay;) )
i=1 j=i+1

The logarithmic transformation (4) was applied by Chu (1997), as well. In general, nonlinear coordinate
transformations like (4) are useful tools of convexification in optimization (Rapcsdk 2001). By introduc-
ing additional variables ¢;;, 1 = 1,...,n—2, j=14+1,...,n— 1, (5) can be transcribed into the form

of a separable programming problem:

n—1
min Z ( i — am 2y (e*ti — 1/am)2> +
i n—1
> ( e —ay;)” + (7 — 1/%]')2) ©
=1 j=1+1

s.t. ti—tj—t;=0,1=1,....n—-2, 5=1+1,...,n— 1.

Each of the univariate summands appearing in the objective function of (6) is an instance of the class of

the univariate functions

2 - 2
fa(t) = (e" —a)" + (e — 1/a) (7)
depending on the real parameter a. Consequently,
. n—1 n—2 n—1
min E fam(ti) + Z Z faij (tij)
i=1 i=1 j=i+1 (8)

s.t. ti—tj—tij:(),iZl,...,n—Q,j:i—l—l,...,n—l
is an equivalent form of (6).

Although problem (5) is unconstrained and the feasible region of (8) is unbounded, suitable lower and
upper bounds can easily be determined for the variables. These bounds are useful when applying, e.g.,
branch-and-bound techniques. Let «y be the value of the objective function of (5) at a point (1, . .., tp—1).

Then, from (' — a;,)* < 7, we get t; < log(,/7 + @;n). Determining the lower and upper bounds

L = —log(\A+1/am),i=1,...,n—1,

u; = log(\ﬁ+ain),i:1,...,n—1, ©)
lij = —log(\ﬁ—i—l/aij),izl,...,n—2,j:i—i-l,...,n—l,

uj = log(yA+ay),i=1,...,n=2, j=i+1,...,n—1



in a similar way, and adding the bound constraints on the variables to (8), we get

) n—1 n—2 n—1
min Z fam(ti) + Z Z faij(tij)
i=1 i=1 j=i+1
s.t. ti—tj=ty,1=1,....n—=2, 7=i+1,...,n—1, (10)

liﬁtiﬁui, i:1,...,n—1,
lij étij S’U,Z'j, i1=1,....n—2, 5=14+1,...,n— 1.
It is clear that the bound constraints added (10) do not exclude any feasible solution of (8) with objective

function value less than or equal to . An equivalent form of (10), without the additional variables ;;,

can be written as

. n—1 n—2 n—1
min Y fan(t) 4SS fati— 1))
=1 i=1 j=i+1 11)
s.t. i<t <ug,i=1,...,n—1, (

lwgtz—tjguw, z':l,...,n—2,j:i—i—l,...,n—l.

The function f,(t) of (7) plays an important role also in the equivalent forms above, therefore, its

main properties are reviewed below. The graphs of f,(t) are depicted in Figure 1 fora = 1,...,12.

It is clear that for any a # 0, we have

fa(t) = frja(—1), (12)

i.e., the graph of f;/, can be obtained by reflecting the graph of f, through the vertical axis. By using
simple calculus, it is easy to see that for any a > 0, we have

fa(t) >0 forallt,

min f,(t) = 0,

argmin f,(t) = {loga},

fa(loga) =0,

fa(t) <0 forallt < loga,

fi(t) > 0 forallt > loga.

Proposition 1. Let

1/4
_ (123+55\/5) /

13
5 (13)
Then for any a with
l/a<a<a, (14)
function f,, is strictly convex. For any
0<a<l/a or a<a, (15)



function f, has two inflexion points tgl) < tELQ), fa 1s strictly concave on [tgl),t((f)] and strictly convex

on (—oo, tfll)] and [t((f), ).
Proof: From (7), we have
f(t) = 2[2e* — ael +2e72 — (1/a)e™ .

a

The sign of f//(¢) determines the convex and concave parts of f,. Consider the quartic polynomial

pa(z) = 22t — ax® — (1/a)z + 2. (16)
By substituting
z=é, (17)
we get
2
fa(t) = —5pa(@). (18)

Since x > 0, the sign of f!/(t) is the same as the sign of p,(z).

The number of changes in sign in the sequence of the coefficients of polynomial p,(z) is 2 (zero
coefficients are not counted). According to Descartes’ rule of signs (Kurosh 1972, p. 247), the number

of positive roots of p,(x) is 0 or 2 (counting with multiplicities).
It is easy to see that

lim p,(z) =2

x—0

and
lim p,(z) = 0.
Tr—00
Moreover, if 1 < a < x, then p,(z) > 2. To prove it, rearrange (16) as
pa(z) = (2t — az®) + (z* — (1/a)z) + 2.
Since z* > ax3 and 2* > x > (1/a)x, we obtain p,(z) > 2.
Assume now that 0 < z < a < 1. Then p,(x) > 0. Now, rearrange (16) as
pa(x) = 22" + (1 —az®) + (1 — (1/a)z).
Since 1 > az® and 1 > (1/a)x, we obtain p,(z) > 0.
As a consequence of the computations above, we obtain that
p1(z) > 0forall x > 0.

Naturally, for any fixed 2z > 0, there exists an a such that p,(x) < 0; we have to choose an a large

enough or an ¢ > 0 small enough.



Write (16) as the function of both = and a:
P(a,z) = 22" — az® — (1/a)x + 2.

Assume that for an x > 0 and @ > 1, we have P(a,x) < 0. We know that z < a holds in this case,

hence
0> 22t —az® — (1/a)z +2 > 2% — az® — (1/a)z + (2/a)x > —az® + (1/a)z.
From 0 > —az® + (1/a)x and a > 0, we have
—2% 4 (1/a®)z = 2P(a,az) < 0.
oa

From the computations above, it follows that if for an @ > 1 the polynomial p,(z) has a positive root,

then p; () has two positive roots for any a > a.
From (16), we get
Pl (2) = 82 — 3ax® — (1/a).
Taking
lim p),(z) = —(1/a) <0
z—0
and

lim p) () = o,
T—0Q0

as well as Decartes’s rule of signs into consideration, it follows that for any a > 0,
Palz) =0
has a unique solution for > 0 and it is also the optimal solution of
min {p,(x) | > 0}. (19)

Now, we determine the unique a > 1 for which the optimal value of (19) is 0. This means that we have

to solve the system
Pa(z) = 0, pj(x) =0,

1.e.,
20" — az® — (1/a)z +2 =0,
xf ar® — (1/a)x 20)
823 — 3ax? — (1/a) = 0.
A polynomial system equivalent to (20) is
2az — a’x® — 2 +2a =0,
1)

8ar® — 3a222 —1=0.



By using the resultant method and eliminating x from (21) (see Kurosh (1972, p. 331) for more details)

(21) can be reduced to solving

2a  —a? 0 -1 2a 0 0
0 2a —a® 0 -1 2a 0
0 0 2¢ —a®> 0 -1 2a
8a —3a? 0 -1 0 0 0 |=0. (22)
0 8 —3a> 0 -1 0 0
0 0 8¢ —3a> 0 -1 0
0 0 0 8 —3a2 0 -1

After some computations, (22) can be transformed into the form
a® —123a*+1=0. (23)

From (23), we have

4 _123+V1287 4 123+ VI5125 _ 123£55V5
1,2 — - - .
: 2 2 2

The positive roots are

1/4
(12315&/5) /
M= |—"% ,

but a1 2 > 1 holds only for a defined in (13). The approximate value of a is 3.330191.

Similar investigations can also be performed for a < 1 directly, but it is simpler to derive the results

from (12) and use the findings for a > 1.

For any 0 < a < 1/a or a < a, the quartic polynomial p,(x) of (16) has two positive roots

) < x((f), and they can easily be computed (see e.g. Kurosh, 1972). Furthermore, p,(z) < 0 for all

x € (x((ll),x((f)) and pg(z) > 0 forall z € (O,xgl)) U (x((f),oo). Let t{) = log 2. i = 1,2. Then,

1
76

according to (17) and (18), the second statement of the proposition follows immediately. O

The relation of function f,(t) to some quartic polynomials has already been exploited in the proof
of Proposition 1. This relation can also be applied to compute lower and upper bounds better that those
in (9). Again, as in (9), let v be the value of the objective function of (5) at a feasible point. We can
assume that v > 0 since in case of v = 0 we are done: <y is the optimal value of (1), moreover, matrix A

is consistent. Consider the equation
faij (t) =~ (24)

foreachi =1,...,n—1,5 =i+ 1,...,n. From the properties of f,(t), it follows that each equation

(24) has exactly two solutions /;; and wu;; such that /;; < loga;; < w;;, and faij (t) < v if and only if



t € [l;j,wij]. The solutions can easily be obtained: after substituting x = e’ and rearranging, we have an

equivalent form of (24),

2
2o "2 4+1=0 (25)

1
4 3, (.2
x” = 2ai52° + (a; + 2 7) a;

tj
that can be solved as a quartic polinomial equation. Thereafter, the solutions of (24) can be obtained

from the positive roots of (25).

It is easy to see that the lower and upper bounds l; = l;,, u; = win, @ =1,...,n — 1and l;j, u;;,7 =
1,...,n—2,7=1+4+1,...,n— 1, are better than those determined by (9). Namely, the feasible set of
(11) with the bounds from (24) is a proper subset of the feasible set with the bounds from (9).

3 Sufficient conditions for the global optimality of a local optimal solution

Let
n—1 n—2 n—1
Ft, ... ,th—1) = Z fa, (ti) + Z Z fai; (ti — ). (26)
i=1 i=1 j=i+1

Function F'is the objective function of problems (5) and (11), and plays an important role in this section.

The value @ from (13), approximately 3.330191, is also used here.

Proposition 2. If
O0<ay<a, i,j=1,...,n, 27)

where a is from (13), then problem (1) has a unique local (thus global) optimal solution, the objective

function of (11) is strictly convex and has a unique local (thus global) minimizer point.

Proof: If (27) holds, then according to Proposition 1, each univariate function in (26) is strictly convex.
The first part of (26), i.e.,

n—1
> fain (i) (28)
i=1
is strictly convex in (t1,...,t,—1), and F'(¢1,...,t,_1) remains strictly convex after adding the second
part
n—2 n—1
Z Z faij(ti _tj)
i=1 j=i+1

of convex functions to (28). Since (26) is strictly convex and its lower level sets are compact (see (9)),
problem (5) has a unique local thus global optimal solution. The convexity of the objective function does
not necessarily hold for the original problems in form (1) and (3), but the nonlinear coordinate transfor-

mation (4) and its inverse assure the one-to-one correspondance between the local optimal solutions of



the problems in the spaces of (w1, ..., wy) and (¢1,...,t,—1), respectively. The statement for problem

(11) follows evidently. O

Corollary 1. If (27) holds, then the equivalent problems (1), (3), (5), (6), (8), (10) and (11) can be solved

by local search techniques starting from any feasible point. O

Relation (27) is a sufficient but not necessary condition of the convexity of F'. Example 1 below
shows a numerical example where (27) does not hold but each local optimal solution is global, too. It can
happen that the strict convexity of several univariate functions in (26) compensates small nonconvexities
of some other univariate functions in (26), and hence F' is convex. We need the Hessian of F' and the

quadratic form with it for such investigations. From (26), we obtain that

(.Tl, e ,SUn,l)vQF(tl, ceey tnfl)(l’l, ey $n,1)T =

n—1 n—2 n—1 _ (29)
> iV fan, (t)xi+ Y0 2 (@i, x5) V2 fayy (i ) (i, 25) T
i=1 i=1 j=it1
for any (n — 1)-vector (z1,...,z,_1), where
f_aij (tivtj) = faij (ti - 75]')- (30)

Equation (29) means that the quadratic form with the Hessian of F' can be obtained from the quadratic
forms with the 1 x 1 and 2 x 2 Hessians of the respective functions on the right-hand-side of (26). Based
upon this property, we construct a quadratic matrix such that the quadratic form generated by this matrix

underestimates the quadratic form generated by V2 F at any feasible point of (11).

Clearly, V2 fa,, (t:) = fo. (t;). Let

i = min{fgm(ti) | li <t < ul} (31)
Then,
iV fas ()i > pi} (32)

for all ¢; € [l;,u;] and for any z;. Applying a technique of substitution similar to the one used in
Proposition 1, the computation of p; can be reduced to finding the positive roots of a quartic polynomial.
Namely,

"(t) = 2[4e* — aet —4e™* + (1/a)e™].

a

Substituting z = €' again, we get

where
Pa(z) = 4zt — ax® + (1/a)z — 4.

10



By determinig the positive roots of the quartic polynomial p,(x), the real roots of f’(¢) can also be
obtained. Here again, finite methods can be used to solve the quartic polynomial equations (see e.g.
Kurosh, 1972).

Now, if the real roots of f”’ (t) are known, then taking the value of f; (t) at the roots lying in
(G

l;, u;|, and taking the values and f” (u;) also into consideration, u; of (31) can be obtained.
g Gin H

The computation of the Hessian of faij (ti,tj) of (30) is also simple. Let t=t;, — t;. Then

62]?(1.”- (ti7t]') a2fa¢j (ti’tj) 17

ot; 0t; = Btjatj = Q5 (5)7
82f_ai'(tivtj) BQf_ai'(tiatj)
8tf-6tj = Btjati - fll,w (t)
and
27 B é’l (t) a,; (1)
\4 fau(tlyt]) - J J .
fa, @ fa” (%)
Let

pij = min{ fg (1) [ lij <t < uy} (33)

Again, p;; can be obtained by solving a quartic polynomial equation. Then

(%%‘)VQfaij(tiafj)(x ) fa, (@i —x)? >

P
pij(xi — 25)* = (w4, 25) [ Y Y ] < Z >
—Hij  Hij Ty

forall [;; < t; —t; < u;; and for any reals z; and ;.

(34)

Proposition 3. Let H;; be the (n — 1) x (n — 1) matrix having 1 in position (7, j) and zeros in all other

positions. Let
n—2 n—1

H = ZM@ ”+Z Z Nz] ’L’L+Hj] Hij_Hji)' (35)

i=1 j=i+1
If H is positive semidefinite, then the objective function of (11) is convex over the feasible set, (11) is
a convex programming problem, thus, any local optimal solution of (11) is global optimal, too. If H is
positive definite, then the objective function of (11) is strictly convex over the feasible set, (11) has a

single local (thus global) optimal solution.

Proof: It follows from (32) and (34) that for any (n — 1)-vector (x1,...,2,—1) and for any feasible

solution (¢1,...,t,—1) of (11), we have

(fl?l, te 7$n—1>v2F(t17 ce 7tTL—1)([E17 st 71"”,—1)T Z (l‘l, te ,.Tn_1>H(fL'1, te 7$n—1)T-

11



If H is positive semidefinite, then

(xl, cee ,.I‘nfl)H(xl, cee ,.I‘nfl)T > 0,
hence
(271, ey xn,l)VQF(tl, ce ,tnfl)(xl, ce ,I‘nfl)T > 0.
This means that V2F (t1,...,tn—1) is positive semidefinite over the feasible set of (11), and conse-

quently, F' is convex over the feasible set of (11). Since the feasible set of (11) is convex, (11) is a

convex programming problem. The statement for positive definite H follows similarly. O

Corollary 2. Consider the case when all /; and [;; are —oo, and all u; and wu;; are co in (11), i.e. the
feasible set of (11) is R*~!. Compute the values y; of (31) and iz of (33) for this case. If the matrix H
in (35) is positive semidefinite, then the equivalent problems (1), (3), (5), (6), (8), (10) and (11) can be

solved by local search techniques starting from any feasible solution. O

Example 1. Let

1 41
A=11/4 1 1]. (36)
1 11

Although condition (27) does not hold since 4 > a, F of (26) is strictly convex in R"~!. To show
it, we determine the minimum of ff and fi over the real line. These values are 4 and approximately
-1.6860, respectively. In this way, we obtain the values p; of (31) and p;; of (33) for l; = l;; = —oo and

u; = u;; = 00. According to (35), the matrix H is

— 4 —1.6866 1.6866 _ | 2.3134 1.6866
1.6866 4 — 1.6866 1.6866 2.3134 |’

and it is positive definite since the determinant of every leading principal submatrix of H is positive (see

Kurosh (1972)). Consequently, F is strictly convex in R” 1. O

Although the sufficient conditions presented in this section may be useful tools when solving problem
(1), the problem in focus may be nonconvex and difficult to solve in any of its equivalent forms. Jensen
(1983, 1984) and Bozoki and Lewis (2005) presented numerical examples with matrices A of size 3 x 3

having not only several local but many global optimal solutions, as well. For example, the problem with

1 4 1/4
A=1]1/4 1 4 (37)
4 1/4 1

has three global optimal solutions, see Bozoki and Lewis (2005) for the details. We mention that the same
numbers 1, 4, and 1/4 appear in the matrices of (36) and (37), but the properties of the corresponding

objective functions are different.

12



4 A branch-and-bound method

In this section, we present a branch-and-bound method for solving (1). More precisely, the equivalent
form (5) is considered, and its search region is restricted by adding lower and upper bound constraints
on the variables. The bounds are computed, using (24), from the objective function value v of a feasible

solution of (5). In this way, problem (11) with a compact feasible set is obtained.

Problem (10) is equivalent to (11) and has a form of separable programming. This suggests, immedi-
ately, to apply a rectangular branch-and-bound technique for solving (10). However, (10) has n(n—1)/2
variables, while (11) has only n — 1 variables. This is why we solve (11) but, essentially, we adapt, for

(11), the rectangular branch-and-bound method detailed in Tuy (1998, Sections 5.5-5.6).

The partition sets in the iterations of the branch-and-bound method have the same form as the feasible

set of (11), the starting partition set, i.e. a partition set M is of form

{(t1,.. s tp) €ERYY] L <t;<wy,i=1,...,n—1, 38)
Lij<ti—t; <wuj,i=1,...,.n—2, j=i+1,...,n—1}.

Clearly, the lower bounds [;, [;; and the upper bounds u;, u;; give an unambiguous description of the

partition set. The partition sets are always assumed being nonempty.

The restriction of (11) to a partition set M/ means the problem

min  F(t1,...,th—1) (39)
st (t1,...,ta_1) € M,
which, similar to (11), may be a nonconvex problem due to the possible nonconvexity of I’ in (26).
According to the general branch-and-bound scheme, we have to determine a lower bound on the optimal
value of (39). This is done by constructing a suitable piecewise linear convex underestimator for F
over M, and by minimizing this underestimator over M. The underestimator is obtained from piecewise

linear convex underestimators of functions fq,, and f,,; appearing in (26).

Let a > 0 and consider the univariate function f,(¢) over an interval [/, u] C R. First, consider the
case when f,(t) is convex over [, u]. This happens when either (14), or (15) holds and (in the latter case)
for the two inflexion points t((ll) < tgf), we have either u < tgl) or tff) <lLLletl=lM <M< ---<

Tm = u be a finite partition of [/, u], and let

Gagu(t) = max {fa(m) + fo(m)(t — 1)} (40)

p=1,...m

Function g, (t) is piecewise linear and convex over [/, u], and

Jaiu(t) < fa(t) forallt € [I,u], (41)
ga,l,u(l) = fa(l)’ ga,l,u(u) - fa(u)a (42)
|ga,l,u({/> - ga,l,u(f) ’S La,l,u | t— £| for all atA € [la 'LL], (43)
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where
Lo =max{|fo(t)]: t € [I,u]}. (44)

Functions like (40) are used in separable convex programming, as well, see Burkard et al. (1991).

Now, consider the case when f,(t) is concave over [/, u]. This happens when (15) holds and we have

t&l) <l<u< t((f) for the two inflexion points. Let

fa(u) = fa(l)

Gata(t) = fall) + =5 2 (t 1), (45)

In the special case of u = [, let

Jatu(t) = fa(l).
Function g ,,(t) is linear, it is the convex envelop of f,(t) over [/,u], and it fulfills the conditions
(41)-(43), too.

Assume now that f, () is neither convex nor concave over [l,u]. Then, f,(t) consists of a concave
part and one or two convex parts over [/, u|. Consider, for the sake of simplicity, the case of two convex

parts. We have then | < ) <+ <, fa(t) is convex over [l,tgl)] and [tg),u], and concave over

[té”,tﬁf)]. In the same way as shown above, construct the convex envelop g ) 2 (t) of fa(t) over

[tgl),th)] by (45), and piecewise linear convex underestimators G140 (t) and 9o, tff),u(t) for f,(t) over
Il t((ll)] and [tg) , u] by (40), respectively. If f, () consists of only a convex and a concave part over [/, u,
then only the convex envelop of the concave part and a piecewise linear convex underestimator of the
convex part are constructed. Thereafter, consider the piecewise linear function over [, u] obtained by
putting together these two or three piecewise linear convex parts. The function constructed in this way is
a nonconvex piecewise linear underestimator of f,(t) over [[,u]. Let g, ,,(t) denote the convex envelop
of this nonconvex function over [/, u]. Function g, ,,(t) is piecewise linear and convex over [/, v, and it

is easy to be constructed, since its breaking points are a subset of those of the nonconvex function. It is
also easy to see that g, ,,(t) fulfills (41)-(43).

We mention that if f,(¢) is not concave over [I,u], gq . (t) is not unambiguously determined. It
depends on the number and the positions of the 7,,’s used in (40). Obviously, if the 7,’s constitute an
equidistant grid and their number tends to oo, then the functions g, ., (t) converge to the convex envelop
of f,(t) over [l, ul.

From the piecewise linear convex underestimators of the univariate functions in (26), we put together

a piecewise linear convex underestimator of F' over the partition set M. Let

n—1 n—2 n—1
GM(th cee atnfl) = Zgaimlmuz' (t2> + Z Z Gaijlijuis (ti - tj)- (46)
i=1 i=1 j=i+1

Then
GM(tl, - ,tn_l) < F(tl, . ,tn_l) for all (tl, - ,tn_l) e M.
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Consequently, the optimal value of

min GM(tl, R ;tn—l)

(47)
s.t. (tl,...,tn_l) eM

is a lower bound of the optimal value of (39). Problem (47) can be reformulated as a linear programming
problem. The univariate piecewise linear convex functions in (46) can be written as
gainyliyui (t) = 7{11&)( ) {alnpt + 5inp}, Z == 1, e, = 17
p=1,..., Min (48)

Gaijlijug; () =  max {agpt +dipt, i=1,...,n =2, j=i+1,...,n— 1
p=1,...,m;;

If the univariate function fy,, 1; u; (OF fa,; 1;;u;;) IS convex or concave over [l;, u;] (or [l;5, u;j]), then

ig Wij
(40) and (45) yield the forms (48) directly. In the convex case m;,, (or m;;) is the number of the points
Tp, in the concave case m;, (or m;;) equals to 1. If the univariate function is neither convex nor concave,
then m;,, (or m;;) depends on a;y, l;, u; (or a;j;,l;j,u;;) as well as on the number and positions of the

7p’s used at the convex part(s) written in the form of (40).

Then, (47) is equivalent to the linear programming problem

n—1 n—2 n—1
i St S S
i=1 i=1 j=i+4+1
s.t. ainpti+5inp_zi§0apzlv"'amin7,L.:la"'an_la (49)

aijp(ti—tj)+6ijp—zij§O,p:1,...,mij,z’zl,...,n—2,j:i+1,...,n—1,
ligtiéui, izl,...,n—l,

lijgti—t]’ < ugj, i=1,....n—2,5=1+1,...,n—1,
where z;,1 =1,...,n—1,and 2;5,1 = 1,...,n — 2, j =1+ 1,...,n — 1, are additional variables.

For a partition set M, let 3(M) and w(M) denote the optimal value and an optimal solution point of
(47), respectively. Clearly, 3(M) is also the optimal value of (49), and the (n — 1)-vector w(M) is the
(t1,...,tn—1) part of an optimal solution of (49).

If Gpr(w(M)) = F(w(M)), then we have found an optimal solution of (39), consequently, the
partition set M needs not to be subdivided in a further step of the branch-and-bound method. Otherwise,

we have
Gu(w(M)) < F(w(M)). (50)

In this case M may be selected for subdivision (branching) in a further step. The w-subdivision strategy,

which is effective in rectangular algorithms, will be adapted for this purpose.

It follows from (50) that there exists at least one univariate function from the right-hand-side of

(26) such that the gap between the function and its piecewise linear convex underestimator is positive at
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w(M). We determine the function with the maximal gap, and use it at the w-subdivision. Let

hin = fam(wz(M)) - gam,li,ui(wi(M))7 i = 1a ceey N — 17
hij = fa; (Wi(M) = wj(M)) = Gay; ;s (wi(M) — w;(M)),
i=1,...n—2 j=i+1,....n—1,

(i0,jo) € argmax {h;; |i=1,...,n—1, j=1i+1,...,n}, Gl
) wi (M), for jo = n,
B { wio (M) — wjy (M), for jo < n.
From (50), we have
higjo > 0. (52)

Also, it follows from (52) and the property (42) of the univariate piecewise linear convex underestimators

that
lio < U < Uy, fOI’jo =n,

linO <v < U 5o fijO <n.
Then, for jo = n, let
MO = {(t1,... tar) € M | £, < 0},

(53)
M® = {(t1,.. ., th_1) € M | v <ty},

and for jo < n, let
M® = {(t1,... tn1) € M | tiy — tjo < v},

(54)
M® ={(t1,... tam1) € M | v < iy — tj, }.

We will refer the partition (53)-(54) as a partition via (v, i, jo)-

The sets M) and M) are nonempty partition sets of form as that in (38), as well. They are created
from M by modifying the lower or upper bound on ¢;, or ¢;, —¢;,. This reduces the range of the possible
values of t;, or t;, — t;, over M. The reduction of the range of ¢;, or t;, — t;, may cause the reduction
of the possible range of other ¢;, — t; or ¢; — ¢;,, and this may cause further reductions, and so on. We

show an easy way how the tight ranges can be determined.

For a partition set M of form as in (38), let

li:min{ti | (tl,...,tnfl)EM}, 1=1,...,n—1,
ﬁi:max{t”(tl,...,tn_l)eM}, 1=1,....,n—1,

lij:min{ti—tﬂ(tl,...,tn,l)GM}, 1=1,....n—2, j=14+1,...,n—1,
ﬂij:max{ti—tj\(tl,...,tn_l)EM},z':l,...,n—2,j:i—l—l,...,n—l.

(55)

The values I;, @; and l_l-j, u;; are the tight bounds on ¢; and ¢; — t;, respectively, over M. Obviously,

Z_ZS iéuivizlw"an_lv

l; gﬂjgaijguij,izl,...,n—2,j:i+1,...,n—1.

J

16



Let

M = {(tl,...,tn_l) e R 1 ‘ Zz

Clearly, M = M. This means that by changing the bounds of M to the tight bounds, the set itself does
not change. Applying tight bounds on the variables is, however, very advantageous when a lower bound
is to be computed on the optimal value of problem (39). It is easy to see that the piecewise linear convex

underestimators g, ; ,, may give better approximations if the bounds / and u are tight.

Range reduction and the computation of bounds as tight as possible are very useful tools in the
branch-and-bound methods of global optimization, and several techniques have been developed for this
purpose, see Tawarmalani and Sahinidis (2002). In principle, linear programming problems should be
solved to obtain the bounds in (55). However, due to the special structure of the partition sets, the values

of (55) can be obtained by solving a shortest path problem in a graph.

Let G = [N, A] denote a directed graph, where A\ is the set of nodes and A is the set of arcs. Let
N={1,....,n}and A= {(4,7) | i € N,j € N,i# j}. A weight ¢;; is associated with each arc:

u;;, for i <j<mn,
_ljia for j <1< n, (56)
Cii =
! Uj, for + < j=mn,

—lj, for j<i=n.
Note that ¢;; may be nonnegative.

Proposition 4. Consider the graph G = [N, A] with weights of arcs as defined in (56). Then, G does
not contain negative-weight cycle. Furthermore, for any i1, j1 € N, let d;, j, denote the weight of the

shortest path from ¢; to ;. Then, for the tight bounds in (55), we have

li=—dp,i=1,...,n—1,

W =djy, 1=1,....,n—1,

_Z m (57)
lij=—dj,i=1,....n—=2, 5=4i+1,...,n—1,

ﬂz]:dl],’L:]_,,n—Q?]:fL—{—]_’7n_1

Proof: Consider, as a primal problem, the combinatorial problem of finding the shortest path in G from

i1 € N to j1 € N. The dual of the problem can be written as the linear program

max Yi, — yjl

(58)
S.t. Yi — Y5 < Cij for all (17.7) € Av

see. e.g., Papadimitriou and Steiglitz (1982). Rearranging the constraints of (58), and taking (56) also
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into consideration, we obtain
max  Yi; — Yj
st. yi—yi<wj,t=1,....n—-2, 5=i+1,...,n—1,
yi—yi < —lj,i=1,...,n—=2, j=i+1,...,n—1, (59)
Yi—Yn < U, 1=1,...,n—1,
Yn—y; < —lj, j=1,....,n— L
It is easy to see that the value of one of the variables can arbitrarily be chosen in (59), so let y, = 0.
Then, (59) can be reformulated as
max Y, — Y5
st. L <y; <w,i=1,...,n—1, (60)
Lj <yi—yj<wuj,it=1,...,n—=2, j=it+1,...,n—1,

where, in the case of 41 = n or j; = n, ¥y, is left out from the objective function.

Note that the feasible set of (60) is just the partition set M. Since M # (), (60), and thus (58) as the
dual of the shortest path problem, have feasible solution. Consequently, the optimal value of the primal
problem is finite for any 1 € N and j; € N. This also means that G does not contain negative-weight

cycle.

By the duality theorem, the optimal value of problem (60) is d;, ;,. Let i1 < j1 < n. Then, from (55)
and (60), we get u;,;, = d;,;,. For j1 < i1 < n, the maximization of y;, — y;, in (60) can be replaced
by the minimization of y;, — y;,. Again, from (55), we get l_jlil = —d;, j,- The remainder of (57) can be

proved in a similar way. O

Corollary 3. Since G does not contain negative-weight cycle, the weights of the shortest paths be-
tween all pairs of nodes can be determined by the Floyd-Warshall algorithm in O(n?) steps, see, e.g.,
Papadimitriou and Steiglitz (1982). Consequently, all tight bounds in (55) can also be determined in
O(n?) steps. O

Now, we present the algorithm proposed for solving problem (5).
Algorithm 1

Select an e > 0.

Initialization. Let t° be the best feasible solution available for (5), and let vg = F(#°). With v = 7,

determine the lower and upper bounds as the solutions of (24), and construct an initial partition set
My of form (38). Let P; = &1 = {Mp}. Set k = 1.

Step 1. For each M € Py, construct a piecewise linear convex underestimator (G according to (46) and
(48), and solve (47) via solving the equivalent linear programming problem (49). Let 5(M) and

w (M) be the optimal value and an optimal solution point of (47), respectively.
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Step 2. Update the incumbent by setting £* equal to the best among #*~! and all w(M), M € Py. Let
T = F(%).

Step 3. Delete every M € Sy, such that (M) > v, —e. Let Ry, be the collection of remaining members
of Sk .

Step 4. If Rj, = (), then terminate: tFisa global e-optimal solution of (5).

Step 5. Choose M}, € argmin{3(M) | M € Ry}. Subdivide M}, by a partition via (v, ig, jo) according
to (51)-(54). Let Py1 be the partition of Mj.

Step 6. For each partition set M € Py, 1, determine the tight bounds according to (57), and replace the
bounds by the tight bounds.

Step 7. Set Sg+1 = (Ri \ {My}) U Pis1. Set k < k + 1 and go back to Step 1.

Proposition 5. Algorithm 1 can make an infinite number of iterations only if ¢ = 0 and in this case every

accumulation point of the sequence {#*} is a global optimal solution of (5).

Proof: If Algorithm 1 is infinite, then there exists at least one infinite sequence of sets My, v = 1,2, ...,
such that for v > 1 each My, is a child of its predecessor My, |, i.e. My, is obtained from M},
directly by a subdivision. Infinite sequences of partition sets with this property are called filters. For
a general class of branch-and-bound algorithms, Tuy (1998, Sections 5.5-5.6) proved that if every filter
{Mjy, k € K} contains an infinite nested sequence { My, k € K1} such that

Ve — B(My) — 0 (k— o0,k € Ky), (61)

then the algorithm is convergent. Since Algorithm 1 is a special case of the general class of branch-and-
bound algorithms being in the focus of Tuy (1998, Sections 5.5-5.6), we shall prove (61) and refer to Tuy
(1998).

Consider a filter { My, k € K }. Itis clear that there exist 1 < i; < j; <n, s € {1,2} and an infinite
subset K1 C K such that every My, k € K is subdivided by a partition via (vk ,i1,71) and its child
in the filter { M}, k € K} has the form M () of (53) or (54). Assume, without loss of generality, that
11 = 1, 71 = n and s = 1. Then, for any k1, k2 € K; for which k; < ko, we get

< <l <wi(My,) <ufp, (62)

where l]f and u’f denote the tight bounds of ¢; in the partition set M. From (62), it follows that there

exist il and 4 such that

B =i, uf —a, wi(M) —ay (k— oo, ke Ky). (63)
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To prove (61), we show first that

Jar (W1 (M) = gqy, 1t (@1 (Mi)) = 0 (k — o0, k € Ki). (64)
Clearly,
Jarn (@1(My)) = gq,, it (w1 (My)) = 65)
(farn (@1 (M) = far, (u})) + (fara () = Gay, gt (w1 (M)
From (63) and the continuity of f,,, we get
Fara @1 (M) = far, (uf) = 0 (k — o0, k € K1). (66)
From (42), it follows that
farn (u’f) = Gayp ik uk (ulf)’ (67)

and from (43) and (67),

k k
[ o () = Gor, gt a1 (M) € Ly et [k — w1 (M),

1

where the Lipschitz constant L is defined in (44). Since for any k1, ko € K7 and k1 < ko € K71, we have

Lk ;g 2L kg k>0,

a1n7l1 yUq a1n7l1 Uy
as well as u¥ — wy(M},) — 0 (k — oo, k € K1), it follows that
faln (ulf) - galn,l’f,uk (wl(Mk')) - 0 (k - OO’ k E Kl) (68)

1

From (65), (66), and (68), we obtain (64). Then, (64) entails
F(w(My)) = Gu (w(Mg)) = 0 (k— o0, k € K),

and taking
F(w(Mg)) =y 2 B(My) = G, (w(My))

also into account, (61) follows immediately. This completes the proof. U

Corollary 4. Let

K n—1 7k
ei/(1+ > €9), fori=1,...,n—1,
ko 7=1
wy = n—1 _
/(14 Y €),  for i =n.
j=1

Then, if Algorithm 1 is infinite, every accumulation point of the sequence {w*} is a global optimal

solution of (1). Similarly, if #* is a global e-optimal solution of (5), so is @" for (1). O

Algorithm 1 differs from the methods published earlier for finding the global optimum of problem
(1). Bozodki (2003, 2006), and Bozoki and Lewis (2005) wrote the first-order necessary condition for
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(1) in the form of a multivariate polynomial system, and applied resultant and homothopy methods for
finding the roots. This approach is capable for finding all local optima of (1). This needs, however,
more computational efforts in comparison to Algorithm 1 that finds only the global optimal solutions of

problem (1).

Carrizosa and Messine (2007) showed that standard interval branch-and-bound algorithms can be
directly used for solving problem (1) and even more general problems, as well. They consider the

general problem

min g((|aij 7%

i :1) (69)
s.t. w; >0, 1=1,...,n,
where g is a monotonic norm in the nonnegative orthant R’}*". Clearly, if g is the I norm, then (69) is
equivalent to problem (1). Carrizosa and Messine (2007) extended (69) also for the case when the scalar
values a;; are replaced by intervals. In the case of problem (1), the standard interval branch-and-bound
algorithms do not exploit the computational advantages derived from the special structure of problem (1)
as detailed in the present paper. This methodological advantage of Algorithm 1 over the standard interval
techniques is valid only for problem (1). For monotonic norms ¢ different from [ as well as for the case
when intervals are given instead of scalar values a;;, a branch-and-bound method similar to Algorithm
1 may be competitive with the standard interval techniques only if special properties similar to those in

this paper can be found and exploited.

S Computational experiments

Algorithm 1 has been tested on numerical examples taken from the literature and on randomly generated
problems, too. The algorithm was coded in C and run on an Intel Pentium 4 PC (3.2 GHz, 2 GB
of RAM). The linear programming problems (49) were solved by the package BPMPD developed by
Mészaros (1999). The unique optimal solution of the Logarithmic Least Squares Method was used as a
starting feasible solution ¥ since it can directly be obtained as the geometric mean of the rows of A. The

tolerance ¢ = 103 was used in the course of the computational experiments.

We applied the following strategy to construct piecewise linear convex underestimators. If at least
one of the univariate functions of (26) was nonconvex over the partition set, then the convex univariate
functions f,(t) were approximated by (40) using m = 2 or m = 3. The endpoints of the interval
were chosen as 7’s, in addition, if log a was in the interval, then in order to assure the nonnegativity
of the underestimation, log a was used as a 7, too. If all of the univariate functions were convex over
the partition set, an equidistant grid of 7’s with m = 20 was used for each function. By the latter
approximation, an iteration of the algorithm proposed by Burkard et al. (1991) for solving separable

convex programming problems was performed. Another approach can be to find the minimum of the

21



convex function over the partition set directly by using an iterative local optimization technique. It may
however turn out that the minimal value of the convex function over the partition set is not better than
the objective function value of the incumbent, thus the partition set is deleted, making the additional

computational efforts wasted.

Three test problems, A to C, were taken from the literature. The pairwise comparison matrix of
problem A is from Saaty (1977). The matrix of wealth-of-nations is a classic test example, used in
several papers for comparing different methods proposed for deriving priority weights from pairwise
comparison matrices. The matrix of problem B is from Saaty (1990), it is a pairwise comparison matrix
of a multiattribute decision problem concerning how to buy a family’s house. Problem C is from Saaty

and Ozdemir (2003) and concerns estimating relative drink consumption in the United States.

Tables 1 to 3 present the pairwise comparison matrices of problems A to C, respectively. In addition,
the last two columns of each table contain the vector of weights wgys computed by the Eigenvector
Method of Saaty (1977), and the vector wr,g5; computed by Algorithm 1 as a global optimal solution for
problem (1).

The size of matrix A in problems A to C was 7 x 7, 8 x 8, and 7 x 7, respectively. Test problems of
smaller size were also created from the original pairwise comparison matrices by taking the upper-left
square submatrices and considering them as pairwise comparison matrices. Table 4 shows the running
time (in seconds) and the number of subdivisions for each of these problems. The problem of size 3 x 3

created from problem C is omitted since it is consistent.

The randomly generated test problems were created in a way similar as Golany and Kress (1993),
and Carrizosa and Messine (2007) did. For a fixed n, a weight vector w = (wy, ..., wn)T was generated
randomly, where each w; was selected independently and uniformly from the set {1,...,9}. The entries
of the consistent matrix of ratios w; /w; were then perturbated by using a parameter p (given in %) and a
perturbation factor §;; randomly generated from a uniform distribution in the interval [—1, 1]. Then, the

entries of matrix A were obtained as

Li(14 55&i5), for i <,

wj
Qij = 1, for i = j,
1/ajz-, for i > j.

The parameter p is referred as ’degree of inconsistency’ in Golany and Kress (1993). Clearly, a greater

value of p allows a greater possible deviation from the value of the given entry of the consistent matrix.

Table 5 summarizes the computational experiments on randomly generated test problems. The test
problems were generated for n = 5, ...,10 and p = 20, 40, 60, 80. For each category, 20 problems were
generated and solved. In Table 5, the average, the minimal and the maximal values of the running times

and the numbers of subdivisions are listed in each category.
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We can observe the usual phenomenon of the branch-and-bound methods, namely, if n increases,

then the computational efforts needed to solve the problems increase more or less exponentially. Also,

except for some categories, considering a fixed n, a greater value of p entails greater computational

efforts. A more precise and detailed analysis of the relation of the consistency ratio (Saaty 1980) and

other measures of inconsistency to the convexity and nonconvexity properties of the problems considered

in the paper will be the topic of further research.
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Table 1: Problem A: Wealth-of-nations pairwise comparison matrix

US USSR China France UK Japan W.Germany wgy Wrsym

UsS 1 4 9 6 6 5 5 0427 0.332
USSR 1/4 1 7 5 5 3 4 0.230 0.249
China 179 177 1 1/5 /5 177 1/5 0.021 0.031
France 1/6 1/5 5 1 1 1/3 1/3 0.052 0.057
UK 176 1/5 5 1 1 1/3 1/3 0.052 0.057
Japan 1/5 1/3 7 3 3 1 2 0.123 0.172
W. Germany 1/5 1/4 5 3 3 172 1 0.094 0.102

Table 2: Problem B: A family’s house buying pairwise comparison matrix

Size Trans. Nbrhd. Age Yard Modern Cond. Finance wgy wrsay

Size 1 5 3 7 6 6 1/3 1/4 0.173  0.220
Trans. 1/5 1 1/3 5 3 3 1/5 1/7 0.054 0.047
Nbrhd. 1/3 3 1 6 3 4 6 1/5 0.188 0.149
Age 177 1/5 1/6 1 1/3 1/4 177 1/8 0.018 0.029
Yard 1/6 1/3 173 3 1 172 1/5 1/6 0.031 0.041
Modern  1/6 1/3 1/4 4 2 1 1/5 1/6 0.036  0.042
Cond. 3 5 1/6 7 5 1 172 0.167 0.203
Finance 4 7 5 8 6 6 2 1 0.333  0.269
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Table 3: Problem C: Pairwise comparison matrix of the drink consumption in the U.S.

Coffee Wine Tea Beer Sodas Milk Water wgy wrsu
Coftee 1 9 3 1 172 1 172 0.142 0.173
Wine 1/9 1 173 1/9 1/9 1/9 179  0.019 0.021
Tee 1/3 3 1 1/4 1/5 1/4 1/5 0.046 0.045
Beer 1 9 4 1 172 1 1 0.164 0.183
Sodas 2 9 5 2 1 2 1 0.252  0.200
Milk 1 9 4 1 1/2 1 172 0.148 0.180
Water 2 9 5 1 1 2 1 0.228 0.198

Table 4: Smaller problems created from Problems A to C
Problem A Problem B Problem C

Time (s) Subdivisions

Time (s) Subdivisions

Time (s) Subdivisions

0 N N Bk~ W3

0.06
0.28
1.61
5.34
12.91

10
39
168
410
731

0.02
0.22
0.33
0.98
5.03
62.95

3

25
27
62
269
2640

0.01
0.42
0.94
1.70

1
32
55
77
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Table S: Randomly generated test problems

Average Minimal Maximal
nop Time (s) Subdivisions Time (s) Subdivisions Time (s) Subdivisions
5 20 0.05 3.50 0.01 0 0.25 19
5 40 0.27 19.90 0.06 4 0.66 48
5 60 0.29 21.40 0.05 3 0.67 47
5 80 0.38 29.75 0.17 13 0.61 51
6 20 0.43 24.25 0.03 1 0.94 52
6 40 0.86 46.70 0.42 21 2.39 124
6 60 1.17 64.70 0.56 32 2.36 131
6 80 1.35 79.65 0.67 38 2.45 148
7 20 2.86 118.45 0.75 33 5.86 234
7 40 3.16 126.15 1.22 49 6.44 276
7 60 3.47 147.85 1.52 62 6.63 286
7 80 5.34 241.45 2.42 108 10.17 491
8 20 8.60 268.45 3.16 97 16.75 527
8 40 9.72 302.70 2.75 88 25.09 764
8 60 11.38 374.80 5.70 187 20.16 666
8 80 24.39 880.90 3.94 127 66.38 2761
9 20 32.02 772.70 7.13 179 72.31 1782
9 40 23.65 586.00 10.36 257 93.30 2224
9 60 32.78 849.85 11.19 274 82.17 2264
9 80 58.65 1650.65 13.23 350 218.95 6537
10 20 99.28 1893.45 29.92 568 249.02 4733
10 40 78.92 1567.55 23.25 466 341.34 6971
10 60 91.51 1879.35 21.25 445 197.78 4043
10 80 220.95 4856.45 98.02 2069 539.13 12078
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