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On Abrams’ theorem

Miklós Ujvári ∗

Abstract. Abrams’ theorem describes a necessary and sufficient con-
dition for the closedness of a linear image of an arbitrary set. Closedness
conditions of this type play an important role in the theory of duality in
convex programming. In this paper we present generalizations of Abrams’
theorem, as well as Abrams-type theorems characterizing other properties
(such as relatively openness or polyhedrality) of linear images of convex
sets.

Mathematics Subject Classifications (2000). 90C46, 90C25,
52A41.

1 Introduction

Closedness conditions play an important role in the theory of duality in convex
programming. Conditions which imply the closedness of convex sets of the form

(AC1) + C2 = {Ax + y : x ∈ C1, y ∈ C2}, (1)

where A ∈ Rm×n is a matrix, C1 ⊆ Rn and C2 ⊆ Rm are convex sets, are
particularly useful, see for example [9]. Before stating the main result of [9], we
fix some notation.

Let us denote by rec C and barC the recession cone and the barrier cone of
a convex set C in Rd, that is let

rec C :=
{

z ∈ Rd : x + λz ∈ C (x ∈ C, λ ≥ 0)
}

,

barC :=
{

a ∈ Rd : inf {aT x : x ∈ C} > −∞
}

.

Then rec C and barC are convex cones. Furthermore, if C is a nonempty closed
convex set in Rd then rec C is the dual cone of barC. The barrier cone and
thus, dually, the recession cone also are not changed via adding of a compact
convex set to a closed convex set.

Let us denote by riC (clC) the relative interior (closure) of the convex set
C in Rd. The relative interior of a convex set C is convex, and is nonempty if
the convex set C is nonempty. (See [3] for the definition and properties of the
relative interior.)
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The main result of [9] describes two equivalent sufficient conditions for the
closedness of the set (1) where C1 is a closed convex set and C2 = P2 is a
polyhedron:

THEOREM 1.1. Let A be an m by n real matrix, let P2 be a polyhedron in
Rm, and let C1 be a closed convex set in Rn. Then between the statements

a) (AT bar P2)∩ ri (bar C1) 6= ∅,
b) A−1(−rec P2) ∩ (rec C1) ⊆ −rec C1,
c) (AC1) + P2 is closed, and rec ((AC1) + P2) = (Arec C1)+ rec P2,

hold the following logical relations: a) is equivalent to b); a) or b) implies c).

In [9] two proofs are given for Theorem 1.1, the second one is of a more
algebraic nature than the first one: it does not use the Bolzano-Weierstrass
theorem. This proof hinges on the following key fact from [1]:

THEOREM 1.2. (Abrams) Let A be an m by n real matrix, and let S1

be an arbitrary set in Rn. Then the set AS1 is closed if and only if the set
S1 + A−1({0}) is closed.

In this paper our aim is to generalize Abrams’ theorem and derive further
sufficient conditions for the closedness of convex sets of the form (1). In Sec-
tion 2 we prove Abrams-type theorems, formally obtained by exchanging the
closedness property in Abrams’ theorem for the properties relatively open, has
only finitely many faces, and polyhedral, respectively. In Section 3 we derive a
lemma that will be applied in Section 4 in the proof of a generalized Abrams’
theorem. The lemma states that if we add a polytope to a convex set, and the
resulting set is closed then the original convex set is closed. Here also, similar
statements hold if we exchange the closedness property for the properties rela-
tively open, has only finitely many exposed faces, and polyhedral, respectively.
Finally, in Section 4 we present three generalizations of Abrams’ theorem, and
an equivalent form of statement c) in Theorem 1.1.

2 Abrams-type theorems

In this section we prove three theorems similar to Abrams’ theorem. These
theorems can be formally obtained by replacing the closedness conditions in
Abrams’ theorem by the assumption that the sets under consideration are rel-
atively open, have only finitely many faces, and are polyhedrons, respectively.

First, note that

A−1(AS1) = S1 + A−1({0}) and A(S1 + A−1({0})) = AS1 (2)

for any matrix A ∈ Rm×n and any set S1 ⊆ Rn. (Here A−1(S2) := {x : Ax ∈
S2} for any set S2 in Rm.) Hence, to prove an Abrams-type theorem it is enough

2



to prove that if a convex set has the corresponding property (is relatively open,...
etc.) then its linear image and inverse image have this property also.

In the case of the relatively open convex sets (i.e. convex sets C with C =
riC) this fact is an immediate consequence of the following lemma (Theorems
6.6 and 6.7 in [3]):

LEMMA 2.1. Let A be an m by n real matrix. Let C1 be a convex set in
Rn, and let C2 be a convex set in Rm such that A−1(riC2) 6= ∅. Then

• ri(AC1) = A(riC1);

• ri (A−1C2) = A−1(riC2).

By Lemma 2.1 and (2) we have

THEOREM 2.1. Let A be an m by n real matrix, and let C1 be a convex
set in Rn. Then the convex set AC1 is relatively open if and only if the convex
set C1 + A−1({0}) is relatively open. 2

A convex set F ⊆ Rd is called the face of the convex set C ⊆ Rd, if F ⊆ C,
and for every x1, x2 ∈ C, 0 < ε < 1, εx1 +(1−ε)x2 ∈ F implies that x1, x2 ∈ F .

The following lemma can be found in [3], see Theorem 18.2:

LEMMA 2.2. Let C be a non-empty convex set, and let U be the collection
of all the relative interiors of non-empty faces of C. Then U is a partition of C,
i.e. the sets in U are disjoint and their union is C. Every relatively open convex
subset of C is contained in one of the sets in U , and these are the maximal
relatively open convex subsets of C.

From Lemma 2.2 it can be easily seen that a convex set C has only finitely
many faces if and only if C is the union of finitely many relatively open convex
sets. From this observation and Lemma 2.1 readily follows

THEOREM 2.2. Let A be an m by n real matrix, and let C1 be a convex
set in Rn. Then the convex set AC1 has only finitely many faces if and only if
the convex set C1 + A−1({0}) has only finitely many faces. 2

Finally, in the case of polyhedral convex sets we need Motzkin’s theorem
([5]) to prove that the linear image of a polyhedron is also a polyhedron (for
inverse images the statement is obvious).

A convex set P1 ⊆ Rn is called a polyhedron if there exist a matrix A ∈ Rm×n

and a vector b ∈ Rm such that P1 = {x : Ax ≤ b}. A convex set Q1 ⊆ Rn

[R1 ⊆ Rn] is called a polytope [finitely generated cone] if there exists a finite set
S1 ⊆ Rn such that Q1 [R1] is the convex hull [convex conical hull] of S1.

LEMMA 2.3. (Motzkin) For every polyhedron P there exist a polytope Q

and a finitely generated cone R such that P = Q + R. Conversely, the sum of a
polytope and a finitely generated cone is a polyhedron.
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Hence, linear images of polyhedrons are sums of linear images of polytopes
(polytopes also) and linear images of finitely generated cones (finitely generated
cones also). Again by Motzkin’s theorem they are polyhedrons. Using this
observation and (2) the following Abrams-type theorem can be easily verified.

THEOREM 2.3. Let A be an m by n real matrix, and let C1 be a convex
set in Rn. Then the convex set AC1 is a polyhedron if and only if the convex
set C1 + A−1({0}) is a polyhedron. 2

3 Adding a polytope

In this section we will study the following type of question: if we add a polytope
to a convex set, and the sum has a certain property (closed, relatively open,...
etc.), then does the original convex set have this property also? These questions
are only seemingly trivial, as we will see the proofs use involved results from
linear algebra.

The proofs of Theorems 3.1, 3.2 and 3.4 are based on the following lemma.

LEMMA 3.1. Let Q ⊆ Rd be the convex hull of the points q1, . . . , qt. Let
pi ∈ Q−{qi} for i = 1, . . . , t. Then there exist nonnegative not all zero constants
λ1, . . . , λt such that

∑t

i=1
λipi = 0.

Proof. The points pi are of the form

pi =

t
∑

j=1

εijqj − qi (i = 1, . . . , t),

where εij ≥ 0 for all i, j, and
∑t

j=1
εij = 1 for all i. Let E denote the t by t

matrix with (i, j)-th element εij . Then E is an elementwise nonnegative matrix
with row sums equal to 1. It can be easily seen that the absolute value of each
eigenvalue of the matrix E is at most 1. Really, if ε is an eigenvalue of the
matrix E, then there exists a nonzero vector v such that Ev = εv. Let vi have
the largest absolute value amongst the elements of the vector v. Then

|ε| · |vi| =

∣

∣

∣

∣

∣

∣

t
∑

j=1

εijvj

∣

∣

∣

∣

∣

∣

≤ |vi| ·
t

∑

j=1

εij = |vi|

holds, and we have |ε| ≤ 1.
Hence, ε = 1 is an eigenvalue of the matrix E with maximal absolute value.

As the matrices E and ET are similar (see Exercise B.4 in [6]), the spectrums
of E and ET are the same. Thus ε = 1 is an eigenvalue of the nonnegative
matrix ET with maximal absolute value, also. By the Perron-Frobenius theorem
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(Theorem 9.2.1 in [4]) there exists a nonnegative eigenvector of the matrix ET

with corresponding eigenvalue 1.
Let us denote by λ1, . . . , λt the elements of this eigenvector. Then the num-

bers λi (i = 1, . . . , t) meet the requirements:

t
∑

i=1

λipi =

t
∑

i=1

t
∑

j=1

λiεijqj −
t

∑

i=1

λiqi

=

t
∑

j=1

(

t
∑

i=1

λiεij − λj

)

qj

=

t
∑

j=1

0 · qj = 0

holds; and the lemma is proved. 2

Now, Lemma 3.1 can be applied to derive

THEOREM 3.1. Let Q ⊆ Rd be the convex hull of the points q1, . . . , qt, and
let C ⊆ Rd be a convex set. If Q + C is closed then C is closed also.

Proof. Let ci ∈ C (i = 1, 2, . . .), and suppose that ci → c∞ (i → ∞). We
have to show that c∞ ∈ C. For every j the sequence qj + ci (i = 1, 2, . . .)
converges to qj + c∞. As the set Q+C is closed, so the limit point is in this set.
Hence there exist q′j ∈ Q and c′j ∈ C such that qj + c∞ = q′j + c′j (j = 1, . . . , t).
By Lemma 3.1 there exist nonnegative not all zero constants λ1, . . . , λt such
that

∑t

j=1
λj(q

′
j − qj) = 0. But then

t
∑

j=1

λjc∞ =

t
∑

j=1

λjc
′
j +

t
∑

j=1

λj(q
′
j − qj) =

t
∑

j=1

λjc
′
j

holds; and the vector c∞ being a convex combination of the vectors c′j ∈ C, is
in C also. Thus the set C is closed, which was to be shown. 2

We remark that the converse of Theorem 3.1 (closedness of C implies the
closedness of Q + C) follows by the Bolzano-Weierstrass theorem. (For another
proof, without using the Bolzano-Weierstrass theorem, see [9].)

THEOREM 3.2. Let Q ⊆ Rd be the convex hull of the points q1, . . . , qt, and
let C ⊆ Rd be a convex set. If Q + C is relatively open, then C is relatively
open also.

Proof. The set Q + C is relatively open, which means that

Q + C = (riQ) + (riC).
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Let c ∈ C, then for every i = 1, . . . , t there exist q′i ∈ riQ and c′i ∈ riC such that
qi + c = q′i + c′i. By Lemma 3.1 there exist nonnegative not all zero constants
λ1, . . . , λt such that

∑t

i=1
λi(q

′
i − qi) = 0. Similarly as in the proof of Theorem

3.1, we can see that c is a convex combination of the vectors c′i ∈ riC; and so by
convexity of riC, c ∈ riC also. We have proved the inclusion C ⊆ riC. As the
other inclusion riC ⊆ C is trivial, we have C = ri C, and the proof is finished.
2

Let C ⊆ Rd be a convex set. If for an F subset of C there exist a vector
a ∈ Rd and a constant β ∈ R such that

aT f = β < aT c (c ∈ C \ F, f ∈ F ),

then F is called an exposed subset of the set C. Every exposed subset is a face,
but generally not vice versa.

THEOREM 3.3. Let Q ⊆ Rd be a polytope, and let C ⊆ Rd be a convex
set. If the convex set Q + C has only finitely many exposed subsets, then the
convex set C has only finitely many exposed subsets also.

Proof. Let S denote the set of pairs (F, G), where F ⊆ C, G ⊆ Q, and there
exist a vector a ∈ Rd and constants β, γ ∈ R such that

aT f = β < aT c (f ∈ F, c ∈ C \ F ), aT g = γ < aT q (g ∈ G, q ∈ Q \ G).

It is easy to see that if (F,G) ∈ S then F + G is an exposed subset of Q + C.
On the other hand, for every (F, G) ∈ S, the equations

F = C ∩ (F + G − Q), G = Q ∩ (F + G − C)

can be easily verified. Hence the map (F,G) 7→ F + G is injective on S, and
maps S into the finite set of exposed subsets of Q + C. Consequently, S has
only finitely many elements. For every exposed subset F of C, there exists an
exposed subset G of Q such that (F,G) ∈ S. Thus the number of exposed
subsets of C is finite, which was to be shown. 2

With minor modification of the proof of Theorem 19.1 in [3], it can be proved
that a convex set is a polyhedron if and only if it is closed and has only finitely
many exposed subsets. (A possible proof uses Theorems 18.7 and 19.6 instead
of Theorem 18.5. See also [7], Theorem 7.12.) Hence the following theorem is
an immediate consequence of Theorems 3.1 and 3.3.

THEOREM 3.4. Let Q ⊆ Rd be a polytope, and let C ⊆ Rd be a convex
set. If Q + C is a polyhedron, then C is a polyhedron also. 2
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4 Generalizations of Abrams’ theorem

In this section we describe three generalizations of Abrams’ theorem. The rela-
tion between the closedness of the sets (AS1)+S2 and S1 +A−1(S2) is studied,
first for arbitrary sets S1, S2, then with additional assumptions on the set S2.

Let A be an m by n real matrix. Then there exists a unique n by m matrix
X such that: a) AXA = A; b) XAX = X; c) (AX)T = AX; d) (XA)T = XA.
This matrix X is called the Moore-Penrose generalized inverse of the matrix A,
and is denoted by A†. It is well-known that then the matrix AA† is the matrix
of the orthogonal projection to the subspace ARn (see [4], [6]).

We adapt the technique of the original proof of Abrams’ theorem (see [1])
to prove the following generalized Abrams’ theorem.

THEOREM 4.1. Let A ∈ Rm×n be a matrix. Let S1 be a set in Rn, and
let S2 be a set in Rm. Then the closedness of the set (AS1) + S2 implies the
closedness of the set S1 + A−1(S2). Conversely also, if S2 ⊆ ARn holds.

Proof. First, we will show that if the set (AS1) + S2 is closed, then the set
S1 + A−1(S2) is closed also. Let xi ∈ S1, vi ∈ A−1(S2) (i = 1, 2, . . .), and
suppose that

xi + vi → z (i → ∞).

Then
Axi + Avi → Az (i → ∞),

and Az ∈ (AS1) + S2 because of the closedness of the set (AS1) + S2. Hence
there exist points x ∈ S1, y ∈ S2 such that Az = Ax + y. Then

z = x + (z − x) ∈ S1 + A−1(S2),

which was to be shown.
To prove the converse direction, let xi ∈ S1, and let yi ∈ S2 (i = 1, 2, . . .).

Suppose that
Axi + yi → b (i → ∞).

Then by the assumption that S2 ⊆ ARn, we have b ∈ ARn. Furthermore,

A†Axi + A†yi → A†b (i → ∞),

which can be written as

xi + vi → A†b (i → ∞)

where vi denotes the following vector:

vi := A†yi − xi + A†Axi (i = 1, 2, . . .).
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The assumption that S2 ⊆ ARn implies that vi ∈ A−1(S2) (i = 1, 2, . . .). Thus
by the closedness of the set S1 + A−1(S2), we have A†b ∈ S1 + A−1(S2). Hence
b = AA†b ∈ (AS1) + S2, which was to be shown. 2

Let A be the matrix 0 ∈ R1×1, let S1 ⊆ R be an arbitrary set, and let
S2 ⊆ R be a not closed set such that 0 ∈ S2. This example shows that generally
the assumption that S2 ⊆ ARn is needed in the theorem. However this is not
the case when S2 is a subspace, as the following theorem shows.

THEOREM 4.2. Let A be an m by n real matrix. Let S1 be a set in Rn,
and let L2 be a subspace in Rm. Then the set (AS1) + L2 is closed if and only
if the set S1 + A−1(L2) is closed.

Proof. Choose a matrix B such that L2 = B−1({0}). Then by Abrams’
theorem the set (AS1) + L2 is closed if and only if the set BAS1 is closed. On
the other hand, A−1(L2) = (BA)−1({0}) holds, so again by Abrams’ theorem
the set S1 + A−1(L2) is closed if and only if the set BAS1 is closed. Hence the
theorem is proved. 2

It is an open problem whether Theorem 4.2 holds with a polyhedron P2

instead of the subspace L2. We were able to prove this conjecture only in the
case when S1 = C1 is a convex set:

THEOREM 4.3. Let A be an m by n real matrix. Let C1 be a convex set
in Rn, and let P2 be a polyhedron in Rm. Then the set (AC1) + P2 is closed if
and only if the set C1 + A−1(P2) is closed.

Proof. We have to prove only that the closedness of the set C1 + A−1(P2)
implies the closedness of the set AC1 + P2 (the other direction is obvious).

Let us suppose first that P2 = R2 is a polyhedral cone. As A−1(R2) =
A−1(R2∩ARn), by Theorem 4.1 the closedness of the set C1 +A−1(R2) implies
the closedness of the set AC1 + R2 ∩ARn. We can apply Theorem 1.1 to show
that then the set AC1 + R2 is closed also. Obviously,

(−R2) ∩ rec (AC1 + R2 ∩ ARn) ⊆ −(R2 ∩ ARn)

⊆ −rec (AC1 + R2 ∩ ARn).

By Theorem 1.1, the sum of the closed convex sets AC1 + R2 ∩ARn and R2 is
closed, that is the set AC1 + R2 is closed. This finishes the proof in the special
case when P2 = R2 is a polyhedral cone.

For the general case let us suppose that the set C1 +A−1(P2) is closed. The
set A−1(P2) is a polyhedron, with recession cone A−1(rec P2). By Motzkin’s the-
orem A−1(P2) is the sum of a polytope and the polyhedral cone A−1(rec P2).
Thus by Theorem 3.1 the closedness of the set C1 +A−1(P2) implies the closed-
ness of the set C1 + A−1(rec P2), which in turn, as we have seen it in the first
half of the proof, implies the closedness of the set AC1 + rec P2. By Motzkin’s
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theorem the polyhedron P2 is the sum of a polytope Q2 and the polyhedral cone
rec P2, so by compactness of the polytope Q2 the closedness of the set AC1 +P2

follows. This way we have proved the nontrivial implication in the theorem in
the general case as well. 2

As we have seen it in the first proof of Theorem 1.3 in [9] (Theorem 1.1 in this
paper), after showing the closedness of the set (AC1)+P2, further steps (Steps 6
and 7) are needed to prove the part concerning the recession cones. Similarly, in
the case of Theorem 4.3, this extension is also possible, see Theorem 4.4 below.
The proof of Theorem 4.4 is analogous to the above-mentioned proof; so we only
describe a lemma here, and the details are left to the reader.

Let K(C) denote the convex conical hull of the set {1}×C, for any convex set
C in Rd. We mention here only two relevant properties of the K(.) operation
(see [3]): the intersection of the cone clK(C) and the hyperplane {1} × Rd

is {1} × (clC), while the intersection of the cone clK(C) and the hyperplane
{0} ×Rd is {0} × rec (cl C).

LEMMA 4.1. Let A be an m by n real matrix. Let C1 be a closed convex
set in Rn, and let R2 be a polyhedral cone in Rm. Let us denote by K̂1 and K̂2

the following two convex cones in Rn+1 and in Rm+1, respectively:

K̂1 := (clK(C1)) +

(

1 0
0 A

)−1 (

0
R2

)

;

K̂2 :=

(

1 0
0 A

)

clK(C1) +

(

0
R2

)

.

With this notation the following statements are equivalent:
a) K̂2 is closed;
b) K̂2 = clK(AC1 + R2);
c) AC1 + R2 is closed, and rec (AC1 + R2) = (Arec C1) + R2;
d) K̂1 is closed;
e) K̂1 = clK(C1 + A−1(R2));
f) C1 + A−1(R2) is closed, and rec (C1 + A−1(R2)) = (rec C1) + A−1(R2).

Proof. a)⇔b): We have proved in Step 6 of the first proof of Theorem 1.3 in
[9], that the closure of the cone K̂2 is clK(AC1 + R2).

b)⇔c): The two convex cones K̂2 and clK(AC1 + R2) are equal if and only
if their intersection with the hyperplanes {1} ×Rm and {0} ×Rm are equal.

d)⇔e) and e)⇔f) can be proved analogously.
Finally, a)⇔d) is a consequence of Theorem 4.3. 2

Now, applying Lemma 4.1, Theorem 3.1 and its converse, we can easily
derive

THEOREM 4.4. Let A be an m by n real matrix. Let C1 be a closed convex
set in Rn, and let P2 be a polyhedron in Rm. Then the following statements are
equivalent:
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a) (AC1) + P2 is closed, and rec ((AC1) + P2) = (Arec C1) + rec P2;
b) C1+A−1(P2) is closed, and rec (C1+A−1(P2)) = (rec C1)+A−1(rec P2).2

Note that statement a) in Theorem 4.4 is exactly statement c) in Theorem
1.1.

Finally, we remark that Theorem 4.3 (and Theorem 4.4) can not be gener-
alized to closed convex sets instead of polyhedrons: There exist closed convex
sets (cones) C1 and C2 such that the set C1 + A−1(C2) is closed but the set
(AC1) + C2 is not closed. Really, let

A : x 7→ x · J (x ∈ R), C1 := R, C2 := PSD

where J ∈ Rn×n denotes the matrix with all elements equal to one, and PSD
denotes the closed convex cone of the n by n real symmetric positive semidefinite
matrices. It is proved in [8] (see Proposition 1.1) that the set (AC1)+C2 is not
closed. On the other hand, the set C1 + A−1(C2) is closed; so A, C1 and C2

indeed meet the requirements.

Conclusion. Abrams’ theorem characterizes the closedness of a linear im-
age of an arbitrary set. In this paper we described three generalizations of
Abrams’ theorem. Also we presented Abrams-type theorems characterizing the
relatively openness, finitely (exposed) facedness and polyhedrality of the linear
image of a convex set, and the Minkowski sum of a polytope and a convex set.
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