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Abstract

The problem considered is as follows: given C ⊂ Rn and F :
C → Rn differentiable, find f : C → R differentiable such that
‖∇f(x)‖−1∇f(x) = ‖F (x)‖−1F (x) for all x ∈ C. Conditions for f

to be pseudoconvex or convex are given. The results are applied to
the differentiable case of the revealed preference problem.

Key words: generalized convexity, generalized monotonicity, consumer the-
ory, direct and indirect utility functions, revealed preference theory.
AMS classification: 90A40, 90C26, 52A41, 47N10, 47H05.

1 Introduction and notation

Given a convex subset C of Rn and a continuously differentiable monotone
map F : C → Rn, then a twice continuously differentiable convex function
f : C → R exists such that F = ∇f if and only if the matrix F ′(x) is
symmetric and positive semidefinite for all x ∈ C. The function f is uniquely
defined up to an additive constant. The vector (∇f(x),−1) of Rn+1 generates
the normal cone at the point (x, f(x)) to the epigraph of f . Moreover, the
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vector ∇f(x) of Rn generates the normal cone at x to the level set S(x) =
{x′ ∈ C : f(x′) ≤ f(x)}. Actually, the symmetry of the matrices F ′(x)
ensures the existence of f while the monotonicity of F gives the convexity of
f and, thereby, its epigraph and its level sets.

The problem considered in the paper is as follows: given a convex subset
C of Rn and a continuously differentiable pseudomonotone map F : C → Rn

not vanishing on C, find a differentiable function f : C → R such that

‖∇f(x)‖−1∇f(x) = ‖F (x)‖−1F (x) ∀x ∈ C.

It is easy to see that if a function like this f exists, it is pseudoconvex and
uniquely defined up to a scalarization: if f1 and f2 respond to the problem,
then there exists k : f1(C) → f2(C) differentiable such that k′(t) > 0 for all
t ∈ f1(C) and f2(x) = k(f1(x)) for all x ∈ C. Also, as in the previous case,
∇f(x) generates the normal cone at x to the convex level set S(x), but there
are no properties concerned with the epigraph. We shall see that a symmetry
property is required on the matrices F ′(x), not on the whole space, but on the
orthogonal subspace to F (x). Similarly to the previous case, this symmetry
property ensures the local existence of f while the pseudomonotonicity of F
gives the pseudoconvexity of f and, thereby, the convexity of its level sets.

The paper is organized as follows. In section 2, we give a brief background
on generalized convexity and generalized monotonicity. Two local results are
given in section 3. Finally, in the last section, we apply the approach to the
differentiable case of the revealed preferences problem in consumer theory.

Now, a few words on the notation in use in the paper.
The transposed matrix of a matrix A is denoted by At, a vector of Rn is

considered as a column matrix, i.e., as a n × 1 matrix. I denotes the n × n
identity matrix. The inner product of two vectors x, y ∈ Rn is denoted by
xty or 〈x, y〉, the euclidean norm of x by ‖x‖. The gradient at a point x
of a differentiable function f : Rn → R is denoted by the vector ∇f(x), the
Hessian by the matrix ∇2f(x). For commodity, we write ∇tf(x) for the 1×n
matrix [∇f(x)]t and, if F : Rn → R , F t(x) for the 1× n matrix [F (x)]t.

Given two vectors x, y ∈ Rn, x ≤ y (x < y) means xi ≤ yi (xi < yi) for
all i. A real function u is said to be nondecreasing if u(x) ≤ u(y) whenever
x ≤ y and increasing if u(x) < u(y) whenever x ≤ y with x 6= y.
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2 A background of generalized convexity

Given C ⊂ Rn and f : C → R , let us define

epi(f) = {(x, λ) ∈ C × R : f(x) ≤ λ}

and, for all x ∈ C,

S(x) = {y ∈ C : f(y) ≤ f(x)}.

Assume that C is convex. f is said to be convex on C if its epigraph
epi(f) is convex, quasiconvex on C if all the level sets S(x), x ∈ C, are
convex. Assume now that f is differentiable on C, then f is quasiconvex on
C if and only if

[x, y ∈ C and f(y) ≤ f(x)] =⇒ (y − x)t∇f(x) ≤ 0. (1)

When f is quasiconvex, ∇f(a) = 0 does not necessarily imply that f has a
local (and, a fortiori, global) minimum at a. In order to remedy this defi-
ciency, a slight modification of the condition leads to the following definition:
a differentiable function f on C is said to be pseudoconvex on C if

[x, y ∈ C and f(y) < f(x)] =⇒ (y − x)t∇f(x) < 0.

A differentiable convex function is pseudoconvex, a differentiable pseudocon-
vex function is quasiconvex. Conversely, it is known that if C is open, f
differentiable and quasiconvex on C and ∇f does not vanish on C, then, f
is pseudoconvex on C.

f is said to be strictly quasiconvex (strictly pseudoconvex) on C if quasi-
convex (pseudoconvex) on C and

x, y ∈ C, x 6= y, t ∈ (0, 1) and f(x) = f(y) =⇒ f(tx + (1− t)y) < f(x).

A second order necessary and sufficient condition for pseudoconvexity is
as follows.

Theorem 2.1 Assume that C is an open convex subset of Rn and f : C → R

is twice continuously differentiable on C. Assume, in addition, that f has a

local minimum at any x ∈ C such that ∇f(x) = 0. Then, f is pseudoconvex

on C if and only if

x ∈ C, h ∈ Rn, ht∇f(x) = 0 =⇒ ht∇2f(x)h ≥ 0.
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Related to this result, we have the following sufficient condition for strict
pseudoconvexity.

Corollary 2.1 Assume that C is an open convex subset of Rn and f : C → R

is twice continuously differentiable on C. Assume that

[x ∈ C, h ∈ Rn, h 6= 0 and ht∇f(x) = 0] =⇒ ht∇2f(x)h > 0.

Then, f is strictly pseudoconvex on C.

A function f : C → R , with C ⊂ Rn convex, is said to be convexifiable
(strongly convexifiable) on C if there exists a continuous strictly increasing
function k : f(C) → R such that k ◦ f is convex (strongly convex). In con-
nection with Theorem 2.1 and Corollary 2.1, we have the following sufficient
condition for convexifiability.

Proposition 2.1 Assume that f is twice continuously differentiable in a

neighborhood of x̄ ∈ Rn and the following condition holds:

[h ∈ Rn, h 6= 0 and ht∇f(x̄) = 0] =⇒ ht∇2f(x̄)h > 0.

Then, f is strongly convexifiable in a neighborhood of x̄.

Proof: It follows from the Finsler-Debreu lemma [10, 9] that there exists
r > 0 and α > 0 such that

ht[∇2f(x̄) + r∇f(x̄)∇tf(x̄)]h ≥ 2α‖h‖2, ∀h ∈ Rn.

Then, on a convex compact neighborhood V of x̄, it holds that

ht[∇2f(x) + r∇f(x)∇tf(x)]h ≥ α‖h‖2, ∀h ∈ Rn, ∀x ∈ V.

Set g(x) = exp(rf(x)). Then,

∇2g(x) = rg(x)[∇2f(x) + r∇f(x)∇tf(x)].

It follows that g is strongly convex on V . 2

A map F : C → Rn is said to be monotone on C if

〈F (x1), x2 − x1〉 ≤ 〈F (x2), x2 − x1〉, ∀x1, x2 ∈ C
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and pseudomonotone on C if

x1, x2 ∈ C and 0 ≤ 〈F (x1), x2 − x1〉 =⇒ 0 ≤ 〈F (x2), x2 − x1〉.

Assume that F is continuously differentiable on the open convex set C. Then,
F is monotone on C if and only if, for all x ∈ C, the matrix F ′(x) is positive
semidefinite. If F does not vanish on C, it is pseudomonotone on C if and
only if for all x ∈ C,

h ∈ Rn, 〈F (x), h〉 = 0 =⇒ 〈F ′(x)h, h〉 ≥ 0.

A differentiable function f : C → R is convex (pseudoconvex) if and only if
its gradient ∇f is monotone (pseudomonotone).

For a text book on generalized convexity and generalized monotonicity,
see [2, 17]. Surveys on the first and second order characterizations of gener-
alized convex functions and generalized monotonicity of maps can be found
in [8, 9].

3 Two local results

In this section, e ∈ Rn is such that ‖e‖ = 1 and C is a compact convex
neighborhood of x̄ ∈ Rn.

Assume that f is a twice continuously differentiable function on C and
et∇f(x) > 0 for all x ∈ C. Let us define for all x ∈ C

F (x) =
∇f(x)

et∇f(x)
. (2)

Clearly etF (x) = F t(x)e = 1.
This section adresses the inverse problem: given F : C → Rn continuously

differentiable such that etF (x) = F t(x)e = 1 for all x ∈ C, find f : C → R
twice continuously differentiable such that (2) holds. In order to show the
pertinence of the assumptions of our theorem, we look at some necessary
assumptions. Assume that f exists, then

(I − F (x)et)2 = I − F (x)et, (I − eF t(x))2 = I − eF t(x),

and F ′(x) = (I − F (x)et)
∇2f(x)

et∇f(x)
.
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Hence,

F ′(x)(I − eF t(x)) = (I − F (x)et)
∇2f(x)

et∇f(x)
(I − eF t(x)) (3)

= (I − F (x)et)F ′(x)(I − eF t(x)).

For simplicity, we set

F̃ (x) = F ′(x)(I − eF t(x)).

It follows that, for all x ∈ C, the matrix F̃ (x) is symmetric. Also, for all
h ∈ Rn,

htF̃ (x)h =
1

et∇f(x)
kt∇2f(x)k with k = (I − eF t(x))h.

Assume that f is pseudoconvex on C. Since by construction

∇tf(x)k = ∇tf(x)(I − eF t(x))h = 0,

Proposition 2.1 implies htF̃ (x)h ≥ 0 for all h ∈ Rn and thereby the matrix
F̃ (x) is positive semidefinite. In line with these observations, our assumptions
are:

• (F1) The map F is continuously differentiable on C and etF (x) = 1
for all x ∈ C.

• (F2) The matrix F̃ (x) is symmetric for any x ∈ C.

If the pseudoconvexity of f is wished, the additional assumption is:

• (F3) The matrix F̃ (x) is positive semidefinite for any x ∈ C.

Finally, if we wish the convexity of f , (F3) is strengthened in:

• (F4) The matrix F̃ (x) is positive definite for any x ∈ C.

Assumption (F2) ((F3), (F4)) means that the matrix F ′(x) is symmetric
(positive semidefinite, positive definite) on the linear subspace orthogonal to
the vector F (x).

Our first theorem is as follows.
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Theorem 3.1 Assume that assumptions (F1) and (F2) hold. Then, there

exists a neighborhood D of x̄ contained in C and a continuously differentiable

f : D → R such that F (x) = (et∇f(x))−1∇f(x) for all x ∈ D. If, in

addition, (F3) holds, then f is pseudoconvex on a convex neighborhood of x̄.

Proof: a) Outline: the proof being rather long and technical, we outline the
main ideas behind it: Assume that f exists and we are given some n×(n−1)
matrix A such that the n×n matrix (A, e) is orthogonal, i.e., (A, e)(A, e)t = I.
For any vector x ∈ Rn, there exists a uniquely defined vector (y, t) ∈ Rn−1×R
such that x = Ay − te. Let x̂ ∈ C and λ = f(x̂). Then, by the implicit
function theorem, there exists a neighborhood V = Y × T of x̂ = Aŷ − t̂e
such that, for x ∈ V , f(x) = λ if and only if x is of the form x = Ay−gλ(y)e
where gλ is a continuously differentiable function on Y such that, for all
y ∈ Y ,

∇gλ(y) =
At∇f(x)

et∇f(x)
= AtF (x).

If, in addition, f is twice differentiable, then so is gλ and

∇2gλ(y) = AtF ′(x)(I − eF t(x))A = AtF̃ (x)A.

It follows that gλ is convex when f is pseudoconvex.
The proof consists in building such functions gλ, next in constructing f

finally in proving that f solves the problem. This approach is borrowed from
Samuelson [31] who considered the case n = 2, a quite more easier case.

b) Preliminaries: Without loss of generality, we assume that x̄ = 0. Set

F̃ (x) = F ′(x)(I − eF t(x)) = (I − F (x)et)F ′(x)(I − eF t(x)).

Then, it follows from (F2) that, for any x ∈ C, F̃ (x) is symmetric and, if
(F3) holds, F̃ (x) is also positive semidefinite. Since C is compact and F is
continuously differentiable on C, the following constants are well defined

M = sup[ ‖x‖ : x ∈ C ],

K0 = sup[ ‖F (x) ‖ : x ∈ C ],

K1 = sup[ ‖x2 − x1‖−1‖F (x2)− F (x1)‖ : x1, x2 ∈ C, x2 6= x1 ],

K2 = sup[ 〈h, F ′(x)k〉 : x ∈ C, h, k ∈ Rn, ‖h‖ = ‖k‖ = 1 ].

For x1, x2 ∈ C, we define

ε(x1, x2) =

{
‖x2 − x1‖−1[F (x2)− F (x1)− F ′(x1)(x2 − x1)] if x1 6= x2,
0 if x1 = x2.
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This function ε is continuous on C × C. For r > 0, define

ε̃(r) = sup[ ‖ε(x1, x2)‖ : x1, x2 ∈ C, ‖x2 − x1‖ ≤ r ].

Then ε̃(r) → 0 when r → 0.
It can be found a neighborhood Λ = [−λ̄, λ̄] ⊂ R of 0 and a convex

compact neighborhood Y ⊂ Rn−1 of 0 such that

(y, λ) ∈ Y × Λ and |t| ≤ K0‖Ay‖ =⇒ Ay − (λ + t)e ∈ C. (4)

c) In this part of the proof, we construct an auxiliary function g. Given
(y, λ) ∈ Y ×Λ, we consider the classical ordinary differential equation prob-
lem:

Find gy,λ : [0, 1] → R differentiable such that gy,λ(0) = λ and

g′y,λ(t) = (Ay)tF (tAy − gy,λ(t)e) for t > 0. (5)

Since tAy−gy,λ(t)e = −λe ∈ int(C) when t = 0 and the map F is continuous
on C, gy,λ(t) is well defined and (tAy−gy,λ(t)e) ∈ C for small positive values
of t. Moreover,

|g′y,λ(t)| ≤ ‖F (tAy − gy,λ(t)e)‖ ‖Ay‖ ≤ K0 ‖Ay‖.

Hence, we deduce from (4) that, for all (t, y, λ) ∈ [0, 1] × Y × Λ, gy,λ(t) is
well defined and tAy − gy,λ(t)e ∈ C. Set

g(t, y, λ) = gy,λ(t), and g̃(y, λ) = g(1, y, λ). (6)

By assumption, F is continuously differentiable, hence a classical result in the
theory of ordinary differential equation problems says that g is continuously
differentiable on [0, 1] × Y × Λ and thereby g̃ is continuously differentiable
on Y × Λ. In the next two steps, we shall give a constructive proof of
the differentiability of g̃ and we shall compute its gradient. Let us remark,
beforehand, that

g′′y,λ(t) = (Ay)tF ′(tAy − gy,λ(t)e)(Ay − eg′y,λ(t))

= 〈Ay, F̃ (tAy − gy,λ(t)e)Ay〉.

d) We start with a Lipschitz property of g.
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Let y, y + z ∈ Y and λ, λ + µ ∈ Λ. For t ∈ [0, 1], let us define

α(t) = g(t, y + z, λ + µ)− g(t, y, λ)− µ.

Then, in view of (5), α(0) = 0 and

α′(t) = 〈Ay, F (x2)− F (x1)〉+ 〈Az, F (x2)〉,

where, for simplification,

x2 = tA(y + z)− g(t, y + z, λ + µ)e and x1 = tAy − g(t, y, λ)e.

Then,

|α′(t)| ≤ MK1 ‖x2 − x1‖+ K0‖Az‖,
|α′(t)| ≤ MK1 ‖tAz − α(t)e− µe‖+ K0‖Az‖,
|α′(t)| ≤ (MK1 + K0)[ ‖Az‖+ |µ|] + MK1|α(t)|.

Let us consider the following associate ordinary differential equation problem:
Find u : [0, 1] → R such that u(0) = 0 and for all t ∈ [0, 1]

u′(t) = (MK1 + K0)(‖Az‖+ |µ|) + MK1u(t).

Then, for all t ∈ [0, 1],

|α(t)| ≤ u(t) ≤ MK1 + K0

MK1

(exp(MK1)− 1)(‖Az‖+ |µ|).

It follows that there exists L > 0 such that for all t ∈ [0, 1], y, y + z ∈ Y and
λ, λ + µ ∈ Λ,

|g(t, y + z, λ + µ)− g(t, y, λ)| ≤ u(t) + |µ| ≤ L(‖Az‖+ |µ|). (L)

e) In this step, we prove that g̃ is differentiable on Y × Λ.
Let y, y + z ∈ Y and λ, λ + µ ∈ Λ. For t ∈ [0, 1], let us define

β(t) = g(t, y + z, λ + µ)− g(t, y, λ)− t〈Az, F (tAy − g(t, y, λ)e)〉.

Then β(0) = µ and

β′(t) = 〈A(y + z), F (x2)− F (x1)〉 − t〈Az, F ′(x1)[Ay − g′y,λ(t)e]〉,
= 〈Ay, F (x2)− F (x1)〉+ 〈Az, F (x2)− F (x1)〉 − t〈Az, F̃ (x1)Ay〉,
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where, as previously,

x2 = tA(y + z)− g(t, y + z, λ + µ)e and x1 = tAy − g(t, y, λ)e.

By assumption (F2), the matrix F̃ (x1) is symmetric, hence

〈Az, F̃ (x1)Ay〉 = 〈Ay, F̃ (x1)Az〉
= 〈Ay, F ′(x1)Az〉 − 〈Ay, F ′(x1)e〉〈F (x1), Az〉.

On the other hand,

x2 − x1 = tAz − g(t, y + z, λ + µ)e + g(t, y, λ)e

= tAz − t〈Az, F (x1)〉e− β(t)e

and

F (x2)− F (x1) = F ′(x1)(x2 − x1) + ‖x2 − x1‖ε(x1, x2)

= F ′(x1)[tAz − t〈Az, F (x1)〉e− β(t)e] + ‖x2 − x1‖ε(x1, x2).

It follows that

β′(t) = −β(t)〈Ay, F ′(x1)e〉+ ξ(t, y, λ, z, µ),

where

ξ(t, y, λ, z, µ) = ‖x2 − x1‖〈Ay, ε(x1, x2)〉+ 〈Az, F (x2)− F (x1)〉.

Let us consider the ordinary differential equation problem:
Find γ : [0, 1] → R such that γ(0) = µ and for all t ∈ [0, 1]

γ′(t) = −γ(t)〈Ay, F ′(tAy − g(t, y, λ)e)e〉.

Then,

γ(t) = µ exp(h(t, y, λ)), where h(t, y, λ) = −
∫ t

0
〈Ay, F ′(sAy−g(s, y, λ)e)e〉ds.

It follows that β(0)− γ(0) = 0 and

β′(t)− γ′(t) = (β(t)− γ(t))〈Ay, F ′(tAy − g(t, y, λ)e)e〉+ ξ(t, y, λ, z, µ).
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There exists K3 > 0 such that for all (t, y, λ) ∈ [0, 1]× Y × Λ,

|〈Ay, F ′(tAy − g(t, y, λ)e)e〉| ≤ K3.

On the other hand,

x2 − x1 = tAz − g(t, y + z, λ + µ)e + g(t, y, λ)e,

‖x2 − x1‖ ≤ ‖Az‖+ L(‖Az‖+ |µ|),
‖x2 − x1‖ ≤ (1 + L)(‖Az‖+ |µ|).

It results that there exists a function ε̂ such that ε̂(s) → 0 when s → 0 and
for all (t, y, λ) ∈ [0, 1]× Y × Λ

|ξ(t, y, λ, z, µ)| ≤ (‖Az‖+ |µ|)ε̂(‖Az‖+ |µ|).

Let us consider the ordinary differential equation problem: Find δ : [0, 1] → R
such that δ(0) = 0 and for all t ∈ [0, 1]

δ′(t) = K3δ(t) + (‖Az‖+ |µ|)ε̂(‖Az‖+ |µ|).

Then, |β(t)− γ(t)| ≤ δ(t) for all t ∈ [0, 1]. Hence,

|β(t)− γ(t)| ≤ δ(t) ≤ δ(1) =
exp(K3)− 1

K3

(‖Az‖+ |µ|)ε̂(‖Az‖+ |µ|).

In particular, in view of (6), for t = 1,

|g̃(y + z, λ + µ)− g̃(y, λ)− 〈G, (z, µ)〉| ≤ exp(K3)

K3

(‖Az‖+ |µ|)ε̂(‖Az‖+ |µ|),

where

G = (AtF (Ay − g̃(y, λ)e), exp(−
∫ 1

0
〈Ay, F ′(sAy − g(s, y, λ)e)e〉ds) ∈ Rn.

It follows that g̃ is continuously differentiable on Y × Λ, its gradient is

∇g̃(y, λ) = (AtF (Ay − g̃(y, λ)e), exp(−
∫ 1

0
〈Ay, F ′(sAy − g(s, y, λ)e)e〉ds).

For a fixed λ ∈ Λ, let us define

g̃λ(y) = g̃(y, λ) ∀ y ∈ Y.
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Then g̃λ is twice continuously differentiable on Y and

∇2g̃λ(y) = AtF̃ (Ay − g̃(y, λ)e)A. (7)

Hence, if (F3) holds, g̃λ is convex on Y .
f) In the last step, we construct the function f . Beforehand, let us define

D = {x = Ay − µe ∈ Rn : y ∈ Y, g̃(y,−λ̄) ≤ µ ≤ g̃(y, λ̄)}.

Then, D is a neighborhood of 0. Let us define H : (Y ×R)×R → Y ×R by

H(y, µ, λ) = g̃(y, λ)− µ, (y, λ) ∈ Y × Λ, µ ∈ R .

Remark that H ′
λ(y, λ, µ) = g̃′λ(y, λ) > 0. Hence, in view of the implicit

function theorem, there exists a continuously differentiable function f defined
on D such that

[f(x) = λ, x = Ay − µe ∈ D] ⇐⇒ [g̃(y, λ) = µ, λ ∈ Λ].

It is clear that
∇f(x)

et∇f(x)
= F (x) ∀x ∈ D.

We have seen that if assumption (F3) holds, g̃λ is convex. Hence, since

g̃λ(y) = g̃(y, λ) ≤ µ ⇐⇒ f(Ay − µe) ≤ λ,

f is quasiconvex on some convex neighborhood D̃ ⊂ D of 0. Next, because
∇f does not vanish on this neighborhood, f is also pseudoconvex on D̃. 2

Remark 3.1 The theorem is local in the sense that the function f has been

defined not on the whole set C but on a neighborhood D of x̄ contained in C.

Indeed, in order that the points tAy − g(t, yλ)e, t ∈ [0, 1] stay in C, C has

been reduced a first time with the introduction of the set Y × Λ in part b) of

the proof, a second time in part f) with the introduction of D.

Corollary 3.1 Assume that assumptions (F1) to (F4) hold and F is twice

continuously differentiable. Then, there exists a convex neighborhood D̃ of x̄

and a strongly convex function f̃ such that F (x) = (et∇f̃(x))−1∇f̃(x) holds

on D̃.
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Proof: Take f and D̃ as constructed in the theorem. Then, ∇g̃ and ∇f are
continuously differentiable. Let x = Ay − µe ∈ D̃ and λ = f(x). Then,

ht∇f(x) = 0 ⇐⇒ (I − eF t(x))h = h.

It follows from relation (3) and assumption (F4) that

ht∇f(x) = 0 =⇒ ht∇2f(x)h > 0 ∀h 6= 0.

Proposition 2.1 implies that, for r > 0 large enough, the function f̃(x) =
exp(rf(x)) is strongly convex on a convex neighborhood of x̄. 2

Remark 3.2 Since gy,λ is the unique solution of problem (5), then it is also

the unique solution of the following problem:

Find fy,µ : [0, 1] → R differentiable such that fy,µ(1) = µ and

f ′y,µ(t) = (Ay)tF (tAy − fy,µ(t)e) for t ∈ [0, 1], (8)

where µ = gλ(y) = gy,λ(1). It results that fy,µ(0) = λ. Hence,

f(Ay − µe) = fy,µ(0).

Next, we consider the case where we are given a continuously differentiable
map N on a a compact neighborhood of x̄ with N(x) = 1 for all x ∈ C and
our problem consists in finding a (convex) neighborhood D ⊂ C of x̄ and a
(pseudoconvex) differentiable function f : D → R such that

N(x) =
∇f(x)

‖∇f(x)‖
, ∀ x ∈ D. (9)

Let us define the matrix

Ñ(x) = N ′(x)(I −N(x)N t(x)).

Then, we consider the following assumptions:

• (H1) The map N is continuously differentiable on C.

• (H2) The matrix Ñ(x) is symmetric for any x ∈ C.
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• (H3) The matrix Ñ(x) is positive semidefinite for any x ∈ C.

• (H4) The matrix Ñ(x) is positive definite for any x ∈ C.

The result, derived from Theorem 3.1, is as follows.

Theorem 3.2 Assume that assumptions (H1) and (H2) hold. Then, there

exists a neighborhood D of x̄ and a continuously differentiable f : D → R

such that N(x) = ‖∇f(x)‖−1∇f(x) for all x ∈ D. If, in addition, (F3)

holds, then f is pseudoconvex on a convex neighborhood of x̄ and if (H1) to

(H4) hold, then f can be chosen convex on an appropriate neighborhood.

Proof: Take e = N(x̄) and reduce C to a compact neighborhood of x̄ on
which etN(x) > 0 for all x in the neighborhood. Without loss of generality,
we denote by C this restriction. Let us define

F (x) =
N(x)

etN(x)
.

Then assumption (F1) holds. Next,

F ′(x) = (I − F (x)et)
N ′(x)

etN(x)
.

Thus,

F̃ (x) = (I − F (x)et)
N ′(x)

etN(x)
(I − eF t(x)).

It is easily seen that

I − eF t(x) = (I −N(x)N t(x))(I − eF t(x)),

From what we deduce that

F̃ (x) = (I − F (x)et)
Ñ(x)

etN(x)
(I − eF t(x)).

Then, assumption (H2) implies assumption (F2), assumption (H3) implies
assumption (F3) and finally assumption (H4) implies assumption (F4). Ap-
ply Theorem 3.1 to obtain the function f . 2
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4 The problem of revealed preferences

In economics, the situation when the behaviour of the consumer is described
through a utility function u is very convenient: the consumer determines his
choice x by maximizing u(x) on the commodity set G, subject to a budget
constraint. Here, we assume that G = Rn

+. Let p̂ ∈ Rn
+, p̂ 6= 0 be the vector

of prices and w > 0 be the income of the consumer. Then the problem of
the consumer consists in

maximize u(x) subject to x ≥ 0 and p̂tx ≤ w.

Set p = w−1p̂, then the problem becomes

v(p) = max [ u(x) : x ≥ 0, ptx ≤ 1].

Denote the set of optimal solutions of this problem by X(p). The mul-
tivalued map X is called the demand correspondence, the function v the
indirect utility function associated to u. Under some reasonable conditions,
u can be recovered from v via the minimization problem:

u(x) = min [ v(p) : p ≥ 0, ptx ≤ 1].

In fact, the concept of utility is rather theorical since observations on
the behaviour of a consumer allow to know his choices (i.e., the demand
correspondence X(p)), but not a representation in terms of a utility function.
Furthermore, if one utility function exists, it is not uniquely defined since,
given a utility function u and k : u(G) → R strictly increasing, the function
û(x) = k(u(x)) describes the behaviour of the consumer as well.

Consequently, an important problem consists in constructing, when it is
possible, a utility function from the knowledge of the demand correspondence.
This problem, known as the problem of revealed preferences, has been given
a special attention since the early beginning of the theory of consumer. See,
for instance, the pioneering works of Samuelson [28, 29], Houthakker [18],
Little [15].

With reference to the previous sections, we consider the case when the
demand correspondence X is single-valued and continuously differentiable
(the case when X is multivalued is the subject of another work [13]). Conse-
quently, we write X(p) = {x(p)}. Note that the problem is completely solved
when n = 2 (see for instance Samuelson [31]), indeed the problem reduces

15



to a classical ordinary differential equation problem) and, for n > 2, when
the demand function x is analytic, with a proof based on exterior differential
calculus (see, e.g., Chiappori–Ekeland [3] and Ekeland [14]). The approach
that we propose here, close to that of [31], consists in constructing an indirect
utility function associated to the demand. Next, by duality, a direct utility
function can be obtained.

Duality between direct and indirect utility functions has been actively
investigated. See, e.g., Roy [25], Lau [21], Diewert [11, 12], Sakai [27],
Crouzeix [4]. Recent references are Crouzeix [6] where the problem of differ-
entiability of direct and indirect utility functions is analyzed and Martinez-
Legaz [22, 23] where a duality scheme is given with minimal assumptions.
Many other references can be found in the list of references of these papers.
For illustration, we have the following result due to Diewert [11]. Here K is
the positive orthant of Rn, i.e., K = {x ∈ Rn : xi > 0, ∀ i}.

Theorem 4.1 Let u : cl(K) → R be such that u is finite, continuous, qua-

siconcave and nondecreasing on cl(K).

For p ∈ K, define

v(p) = sup[ u(x) : x ≥ 0, ptx ≤ 1].

Then, v is finite, continuous, quasiconvex and nonincreasing on K. Further-

more,

u(x) = inf[ v(p) : p ≥ 0, ptx ≤ 1].

Furthermore, in the differentiable case, we have the following result proved
in [6].

Theorem 4.2 Let u : K → R. For all p ∈ K, let us define

v(p) = sup[ u(x) : x ≥ 0, ptx ≤ 1]. (10)

Denote the set of the optimal solutions of this problem by X(p). Assume

that:

i) u is finite, strictly quasiconcave and continuously differentiable on K,

ii) ∇u(x) > 0 for all x ∈ K,
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iii) X(p) ∩K 6= ∅ for all p ∈ K.

Then for all x ∈ K

u(x) = min[ v(p) : p ≥ 0, ptx ≤ 1]. (11)

Furthermore, denoting the set of the optimal solutions of this problem by

P (x),

iv) v is finite, strictly quasiconvex and continuously differentiable on K,

v) ∇v(p) < 0 for all p ∈ K,

vi) P (x) ∩K 6= ∅ for all x ∈ K.

In this result, the duality is quite symmetric: under the assumptions u
is strictly pseudoconcave on K and v is strictly pseudoconvex on K. For
p ∈ K, X(p) is single-valued and similarly, for x ∈ K, P (x) is single-valued.
Furthermore, we have the following implications.

[p ∈ K and x ∈ X(p)] ⇔ [u(x) = v(p) and ptx = 1] ⇔ [x ∈ K and p ∈ P (x)].

Hence, since x(p) is the optimal solution of the differentiable optimization
problem (10) and ptx(p) = 1,

x(p) =
∇v(p)

pt∇v(p)
,

and if, in addition, v is twice differentiable,

x′(p) = [I − x(p)pt]
∇2v(p)

pt∇v(p)
− x(p)xt(p),

x′(p)[I − pxt(p)] = [I − x(p)pt]
∇2v(p)

pt∇v(p)
[I − pxt(p)],

x′(p)[I − pxt(p)] = [I − x(p)pt]x′(p)[I − pxt(p)].

Clearly pt∇v(p) < 0. Hence, since v is pseudoconvex, the matrix x′(p) is
symmetric and negative semidefinite on the orthogonal subspace to x(p),
these properties are known as the Slutsky conditions [32, 1].

We return to the problem of reconstructing an indirect utility function
v from a single-valued differentiable demand. Assume that the following
assumptions hold on x : K → K:
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• (D1) The map x is continuously differentiable on K;

• (D2) The condition ptx(p) = 1 holds for all p ∈ K;

• (D3) For all p ∈ K, the matrix x′(p) is symmetric and negative semidef-
inite on the orthogonal subspace to x(p).

The theorem is as follows.

Theorem 4.3 Assume that assumptions (D1), (D2) and (D3) hold. Then

there exists a continuously differentiable indirect utility v on K such that

x(p) =
∇v(p)

pt∇v(p)

for all p ∈ K. This function v is pseudoconvex and decreasing on K.

Proof: a) Preliminaries: Let e = 1√
n
(1, 1, · · · , 1)t ∈ Rn and A be an n×(n−1)

matrix such that (A, e)(A, e)t = I. Any p ∈ K can be written as p = Ay+µe,
where y = Atp ∈ Rn−1 and µ = etp > 0. Set

F (p) =
−x(p)

etx(p)
.

Assumption (D3) implies that F ′(p) is symmetric and positive semidefinite
on the orthogonal subspace to F (p).

Fix p = Ay +µe ∈ K and, in line with Remark 3.2, consider the ordinary
differential equation problem:

Find h(., y, µ) : [t̄, 1] → R differentiable such that h(1, y, µ) = µ and

h′t(t, y, µ) = −(Ay)tx(tAy + h(t, y, µ)e)

etx(tAy + h(t, y, µ)e)
for t ∈ [t̄, 1], (12)

where t̄ ∈ [0, 1) is taken in such a way that the vector tAy + h(t, y, µ)e stays
positive on [t̄, 1].

b) In this part of the proof, we shall prove that t̄ can be taken equal to
1. For simplicity, y and µ staying fixed, set

θ(t) = h(t, y, µ), p(t) = tAy + θ(t)e and x(t) = x(p(t)).

18



Then, for t ∈ [t̄, 1],

θ′′(t) = −(Ay)t[I − x(t)et

etx(t)
]

x′(t)

etx(t)
[I − e[x(t)]t

etx(t)
]Ay.

The vector [I − e[x(t)]t

etx(t)
]Ay is orthogonal to x(p), thereby (D3) implies that θ

is convex on [t̄, 1]. Thus,

θ(t) ≥ θ(1) + (t− 1)θ′(1) = µ + (1− t)
ytAtx(1)

etx(1)
,

and since
1 = [p(1)]tx(1) = (Ay)tx(1) + µetx(1),

we obtain finally,

θ(t) ≥ µt +
(1− t)

etx(1)
.

From what, we deduce that there exists a positive vector x−(y, µ) not de-
pending on t̄ such that for all t ∈ [t̄, 1],

x(t) ≥ t(Ay + µe) +
1− t

etx(1)
e ≥ x−(y, µ) > 0. (13)

On the other hand, for all vector z ∈ Rn
+, we have the inequalities,

etz ≤ ‖z‖ ≤ etz
√

n

Because the vector x(t) is assumed to be positive, we deduce from (12)

|θ′(t)| ≤ ‖Ay‖
√

n = ‖y‖
√

n,

which implies
θ(t) ≤ µ + (1− t)‖y‖

√
n.

Thus, there exists a positive vector x+(y, µ) not depending on t̄ such that
for all t ∈ [t̄, 1]

x(t) ≤ t(Ay + µe) + (1− t)
√

n‖y‖ e ≤ x+(y, µ). (14)

We deduce that the function h(., y, µ) is well defined on [0, 1].
c) In this part, we introduce the function v on K by

v(p) = −h(0, y, µ) where p = Ay + µe.

This function v is well defined on K. Set λ = −v(p) and let us consider the
ordinary differential equation problem:
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Find k(., y, λ) : [t̄, 1] → R differentiable such that k(0, y, λ) = λ and

k′t(t, y, λ) = −(Ay)tx(tAy + k(t, y, λ)e)

etx(tAy + k(t, y, λ)e)
for t ∈ [0, 1],

Then, µ = k(1, y, λ).
Let p̄ = Aȳ + µ̄e ∈ K. In view of (13) and (14), there exists a convex

compact neighborhood C of p̄, C ⊂ K, such that for any p = Ay+µe ∈ int(C)
and any t ∈ [0, 1] the vector tAy + h(t, y, µ)e ∈ int(C).

The remaining of the proof is, mutatis mutandis, similar to the proof of
Theorem 3.1, but unlike in this proof, it is no more necessary to restrict C.
It is proved that v is differentiable on C and

x(p)

‖x(p)‖
= − ∇v(p)

‖∇v(p)‖
,

next that v is pseudoconvex on C. Finally it is observed that v is the unique
differentiable indirect utility function associated to the demand map x such
that v(te) = −t. 2

Remark 4.1 The theorem, unlike Theorems 3.1 and 3.2 is global since, un-

der the assumptions, v is defined on the whole set K.
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