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Abstract. In the paper, the Fenchel problem of level sets in the smooth case

is solved by deducing a new and “nice” geometric necessary and sufficient condi-

tion for the existence of a smooth convex function with the level sets of a given

smooth pseudoconvex function. The main theorem is based on a general differen-

tial geometric tool, the space of paths defined on smooth manifolds. This approach

provides a complete geometric characterization of a new subclass of pseudoconvex

functions originated from analytical mechanics, and a new view on the convexlike

and generalized convexlike mappings in the image analysis.

KeyWords. Fenchel problem of level sets, convex image transformable functions,

pseudoconvexity, space of paths.
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1. Introduction

In the paper of two parts, a new and “nice” geometric necessary and sufficient

condition will be given for the existence of a smooth convex function with the

level sets of a given smooth pseudoconvex function, which is a new solution for

the second part of the Fenchel problem of level sets in the smooth case. A survey

of the Fenchel problem of level sets can be found in Ref. 1. The main theorem is

proved by using a general differential geometric tool, the geometry of paths defined

on smooth manifolds which is the subject of the first part of the paper (Ref. 2).

This approach provides a complete geometric characterization of a new subclass of

pseudoconvex functions originated from analytical mechanics, an extension of the

local-global property of nonlinear optimization to nonconvex open sets, a powerful

tool - the linear connection which does not depend on either the original data or

a Riemannian metric - to improve the structure of a function or a problem from

optimization point of view.

In Section 2, a new subclass of the pseudoconvex functions originated from an-
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alytical mechanics are characterized by the geometry of paths, in Section 3, a new

geometric description of the convex image transformable functions can be found in

the smooth case, and in Section 4, some concluding remarks end the paper.

2. A new subclass of the pseudoconvex functions

In the theory of convex and classic generalized convex functions, the most impor-

tant classes are the convex, pseudoconvex and quasiconvex functions. In this part,

the geometric characterization given in Theorem 2.4 and Corollary 2.4 in Ref. 2

is specialized to a new subclass of the pseudoconvex functions originated from an-

alytical mechanics. The most commonly used definition of pseudoconvexity was

introduced by Mangasarian (Ref. 3) for differentiable functions.

Definition 2.1. A subset A of the n-dimensional real Euclidean space Rn is a

convex set if λx1 + (1− λ)x2 ∈ A for every x1,x2 ∈ A and 0 ≤ λ ≤ 1.

A differentiable function f defined on an open convex set A ⊆ Rn is said to be
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pseudoconvex if for every x1,x2 ∈ A,

f(x1) < f(x2) ⇒ ∇f(x2)(x1 − x2) < 0. (1)

Let A ⊆ Rn be a convex set, x ∈ A and y = z− x, z ∈ A. Then,

x(t) = x + ty ∈ A, t ∈ [0, 1],

and f is convex (pseudoconvex) iff every

f(x(t)), t ∈ [0, 1],

is convex (pseudoconvex).

In analytical mechanics, a motion of a system of mass points is a C2 vector

function

x(t), t ∈ [0, 1],

where x′(t) and x′′(t), t ∈ [0, 1], is the velocity and acceleration vector at t, respec-

tively. In the case of a convex function, every x(t), t ∈ [0, 1], is a line segment,

and

x′(t) = y, x′′(t) = 0, t ∈ [0, 1].
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From analytical point of view, this motion is of the same velocity at every t.

If the function f is not convex, but convex along every line segment

x(t) = x + ϕ(x,y)(t)y ∈ A, ϕ′(x,y)(t) > 0, t ∈ [0, t̂(x,y)],

for some t̂(x,y) > 0, then, from analytical point of view, this motion is of the

acceleration ϕ′′(x,y)(t)y at every t. A natural question is how to characterize this

class of functions.

The following statement characterizes pseudoconvexity, see, e.g., Crouzeix

(Ref. 4).

Theorem 2.1. Let A ⊆ Rn be an open convex set and f ∈ C2(A,R). Then, f

is pseudoconvex iff

x ∈ A, ∇f(x) = 0 ⇒ f has a local minimum at x, (2)

x ∈ A, v ∈ Rn, ∇f(x)v = 0 ⇒ vT Hf(x)v ≥ 0. (3)

In Theorem 2.1, the openness of the set A cannot be excluded.
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Let the augmented Hessian matrix of the function f ∈ C2(A,R) be given by

Hf(x; r) = Hf(x) + r∇f(x)T∇f(x), x ∈ A, r ∈ R. (4)

Definition 2.2. Let H, Hc and HlL be the family of functions f ∈ C2(A,R) for

which a positive semidefinite augmented Hessian matrix with a function ψ : A → R,

a continuous function ψ : A → R and a locally Lipschitz function ψ : A → R

exists at every x ∈ A, respectively.

By Fenchel (Ref. 5), a necessary condition for the convexifiability of f over an

open convex set A is that f ∈ H, and the second one is the pseudoconvexity of f .

It is obvious that if f ∈ C2(A,R) is convex on A, then, ψ(x) = 0, x ∈ A, can

be chosen. The family of the functions Hc was introduced by Avriel and Schaible

in 1978 (see, Ref. 6) and characterized by Schaible and Zang (Ref. 7), see, Avriel et

al. (Ref. 6). They have shown that the family of the functions Hc in H is described

by the property that for every compact convex subset A′ ⊆ A, there exists a real

value r(A′) such that H(x; r(A′)) is positive semidefinite on A′ ⊆ A. The family H

7



is characterized in Avriel et al. (Ref. 6).

The next statement characterizes the new subclass HlL ⊆ Hc ⊂ H.

Theorem 2.2. Let A ⊆ Rn be an open convex set, f ∈ C2(A,R) and ψ : A → R

a locally Lipschitz function. Then, f ∈ HlL iff for every x ∈ A there exists a convex

neighborhood U(x) ⊆ A such that for every pair (x,y = z− x), z ∈ A, the single

variable function

f
(
x + ϕ(x,y)(t)y

)
, x + ϕ(x,y)(t)y ∈ U(x), t ∈ [0, 1], (5)

is convex where ϕ(x,y) : [0, 1] → R, ϕ(x,y)(0) = 0, ϕ′(x,y)(0) = 1, is a strictly

increasing function given by the following differential equation:

(
− 1

ϕ′(x,y)(t)

)′
= ψ

(
x + ϕ(x,y)(t)y

)∇f
(
x + ϕ(x,y)(t)y

)
y, t ∈ [0, 1]. (6)

Moreover, if ψ : A → R+, and

∇f(x)y > 0, (7)

then, ϕ(x,y) is strictly convex.
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In the proof of the theorem, two lemmas are used. The first lemma shows that

the subclass of the functions HlL is related to local Γ-convexity.

Lemma 2.1. Let A ⊆ Rn be an open set, f ∈ C2(A,R) and ψ : A → R a locally

Lipschitz function. Then, f ∈ HlL with ψ iff f is locally Γ-convex on A with

Γ1 = −ψ(x)




∂f(x)
∂x1

1
2

∂f(x)
∂x2

. . .
1
2

∂f(x)
∂xn

1
2

∂f(x)
∂x2

0 . . . 0

...
...

. . .
...

1
2

∂f(x)
∂xn

0 . . . 0




,

...

Γn = −ψ(x)




0 0 . . .
1
2

∂f(x)
∂x1

0 0 . . .
1
2

∂f(x)
∂x2

...
...

. . .
...

1
2

∂f(x)
∂x1

1
2

∂f(x)
∂x2

. . .
∂f(x)
∂xn




,

x ∈ Rn.

(8)

Proof. Based on the locally Lipschitz function ψ and f ∈ C2, the linear connection

(8) determines a space of paths containing all the Γ-geodesics on A. Since,

−∇f(x)Γ(x) = −
n∑

i=1

∂f(x)
∂xi

Γi(x) = ψ(x)∇f(x)T∇f(x), x ∈ A, (9)
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and by formulas (17) in Ref. 2, we have that

D2
Γf(x) = Hf(x) + ψ(x)∇f(x)T∇f(x), x ∈ A. (10)

By Corollary 2.4 in Ref. 2, f is locally (strictly) Γ-convex on A iff D2
Γf is positive

semidefinite on A, from which the statement follows. ¤

It is known that every function f ∈ Hc is pseudoconvex, e.g., Avriel et al.

(Ref. 6). Here, a simple geometric proof is given for the class HlL.

Lemma 2.2. Let A ⊆ Rn be an open convex set, f ∈ C2(A, R) and ψ : A → R

a locally Lipschitz function. If f is locally Γ-convex on A with the linear connection

(8), then f is pseudoconvex on A.

Proof. If f is locally Γ-convex on A with any linear connection (8), then by Corol-

lary 2.1 in Ref 2, (2) holds, and by Lemma 2.1, f ∈ HlL with a locally Lipschitz

function ψ, from which (3) follows. By Theorem 2.1, (2) and (3) hold iff f is

pseudoconvex on A. ¤
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Proof of Theorem 2.2.

(I.) If f ∈ HlL, then by Lemma 2.1, f is locally Γ-convex on A with the linear

connection (8). The Γ-geodesics γ(t)T = x(t)T = (x1(t), . . . , xn(t)), t ∈ [0, 1], can

be obtained by solving the following system of differential equations:

x′′i (t) = −x′(t)T Γi
(
x(t)

)
x′(t) = ψ(x(t))·

(x′1(t), . . . , x
′
n(t))




. . .
1
2

∂f(x(t))
∂x1

. . .

...
...

...
. . .

...
1
2

∂f(x(t))
∂x1

. . .
∂f(x(t))

∂xi
. . .

1
2

∂f(x(t))
∂xn

...
...

...
. . .

...

. . .
1
2

∂f(x(t))
∂xn

. . .







x′1(t)
...

x′n(t)




= ψ(x(t))
n∑

j=1

∂f(x(t))
∂xj

x′j(t)x
′
i(t) = ψ(x(t))x′i(t)∇f(x(t))x′(t), t ∈ [0, 1],

(11)

on some subinterval of [0, 1].

In order to find all the trajectories γ ∈ C2 that pass an arbitrary point x ∈ A,

different cases must be considered. Let x(t), t ∈ [0, 1], be the solution with the
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following initial values:

x(0) = x, x′(0) = y.

(i) Assume that x′i(0) 6= 0, i = 1. . . . , n. Then, due to continuity, there exists

an interval [0, t0] ⊆ [0, 1] such that the functions x(t),x′(t),t ∈ [0, t0], are

sign preserving.

By rewriting system (11), we have that

x′′i (t)
x′i(t)

= ψ(x(t))∇f(x(t))x′(t), t ∈ [0, t0], i = 1, . . . , n. (12)

It follows that

x′′i (t)
x′i(t)

=
x′′j (t)
x′j(t)

, t ∈ [0, t0], ∀(i, j) ∈ {1, 2, . . . , n}2, (13)

from which

x′′k(t)
x′k(t)

=

{
(
ln x′k(t)

)′ if x′k(0) > 0,

(
ln(−x′k(t)

)′ if x′k(0) < 0,

t ∈ [0, t0], k = 1, 2, . . . , n.
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By integrating equations (13), we have that

ln
x′i(t)
x′i(0)

= ln
x′j(t)
x′j(0)

, t ∈ [0, t0], ∀(i, j) ∈ {1, 2, . . . , n}2,

i.e.,

x′i(t) =
x′i(0)
x′j(0)

x′j(t), t ∈ [0, t0], ∀(i, j) ∈ {1, 2, . . . , n}2. (14)

By integrating (14) on [0, t] ⊆ [0, t0], we can express every component of

the trajectory as a linear function of any other component as follows:

xi(t) =
xj(t)− xj(0)

x′j(0)
x′i(0) + xi(0), t ∈ [0, t0], ∀(i, j) ∈ {1, 2, . . . , n}2,

from which

x(t) = x0 + ϕ(x,y)(t)y, t ∈ [0, t0], (15)

where

ϕ(x,y)(t) =
x1(t)− x1(0)

x′1(0)
, t ∈ [0, t0].

Consequently, ϕ(x,y)(0) = 0, ϕ′(x,y)(0) = 1.
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(ii) Assume that x′i(0) 6= 0, i ∈ I1 6= ∅, x′i(0) = 0, i ∈ I2, and

I1 ∪ I2 = {1, 2, . . . , n}. Then, due to the continuity of the derivatives, there

exists an interval [0, t0] ⊆ [0, 1] such that x(t),t ∈ [0, t0]; x′i(t),t ∈ [0, t0],

i ∈ I1, are sign preserving, and due to the uniqueness of the solution,

x′i(t) = 0, t ∈ [0, t0], i ∈ I2. Thus, xi(t), t ∈ [0, t0], i ∈ I1, can be given by

(15), while

xi(t) = xi(0) + ϕ(x,y)(t)x′i(0) = xi(0), t ∈ [0, t0], i ∈ I2.

(iii) Let x′i(0) = 0, i = 1, . . . , n. Then, there exists an interval [0, t0] such that

x′i(t) = 0, t ∈ [0, t0], i = 1, . . . , n,

and the trajectory consists of one point:

x(t) = x0, t ∈ [0, t0].

Let ϕ(x,0)(t) = t, t ∈ [0, t0].

By introducing the parameter transformation τ =
t

t0
, τ ∈ [0, 1], in (15), the

differential equations do not change but the interval of the parameter becomes [0, 1].
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A consequence of the above analysis is that the system of differential equations

(11) can be reduced to the following single differential equation:

ϕ′′(x,y)(t)(
ϕ′(x,y)(t)

)2 =
(
− 1

ϕ′(x,y)(t)

)′
= ψ

(
x + ϕ(x,y)(t)y

)∇f
(
x + ϕ(x,y)(t)y

)
y, t ∈ [0, 1].

(16)

By (16) and ϕ′(x,y)(0) = 1, the function ϕ(x,y) is strictly increasing.

By Lemma 2.2, f is pseudoconvex on A, thus, by the first-order characterization

of the pseudoconvex functions,

x, z ∈ A and ∇f(x)(z− x) > 0 ⇒ ∇f(z)(z− x) > 0.

Let us choose z = x + ϕ(x,y)(t)y ∈ A, then,

∇f(x)y > 0 ⇒ ∇f
(
x + ϕ(x,y)(t)y

)
y > 0, ∀t ∈ [0, 1]. (17)

Since ψ : A → R+, (16) and (17) result in a strictly convex function

ϕ(x,y) : [0, 1] → R.

By the Whitehead theorem, formulas (16) and (17) in Ref. 2, a convex neigh-

bourhood exists around every point x ∈ A such that relations (5) and (6) hold.
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(II.) If the single variable functions (5) are convex and the differential equations

(6) hold, then by twice differentiating (5), we obtain that

yT Hf
(
x + ϕ(x,y)(t)y

)
y +

ϕ′′(x,y)(t)(
ϕ′(x,y)(t)

)2∇f
(
x + ϕ(x,y)(t)y

)
y ≥ 0, y ∈ Rn.

(18)

By substituting the right-hand side of (6) for
ϕ′′(x,y)

(ϕ′(x,y))
2

in formula (18), we have

that f ∈ HlL. ¤

Corollary 2.1. Let A ⊆ Rn be an open convex set and f ∈ C2(A, R). Then,

f is convex iff the single variable functions defined by (5), (6) and (7) are locally

convex on A for every locally Lipschitz function ψ : A → R≥.

In the next example, the space of paths is determined based on a linear connec-

tion (8). The paths are line segments parametrized by a function ϕ which is the

solution of differential equation (6).

Example 2.1. If

f(x, y) = xy, ψ(x, y) = − 1
xy

, (x, y) ∈ R2
+,

16



where R2
+ denotes the positive orthant in R2, then,

∇f(x, y) = (y, x), (x, y) ∈ R2
+.

The linear connection defined by (8) is as follows:

Γ1(x, y) =
1
xy


 y

1
2
x

1
2
x 0


 =




1
x

1
2y

1
2y

0


 , (x, y) ∈ R2

+,

Γ2(x, y) =
1
xy


 0

1
2
y

1
2
y 0


 =




0
1
2x

1
2x

1
y


 , (x, y) ∈ R2

+.

The Γ-geodesics γ(t)T = (x(t), y(t)), t ∈ [0, 1], i.e., the space of paths can be

obtained by solving the following system of differential equations:

x′′(t) = (x′(t), y′(t))T




1
x(t)

1
2y(t)

1
2y(t)

0




(
x′(t)
y′(t)

)

=

(
x′(t)

)2

x(t)
+

x′(t)y′(t)
y(t)

, t ∈ [0, 1], (19a)

17



y′′(t) = (x′(t), y′(t))T




0
1

2x(t)
1

2x(t)
1

y(t)




(
x′(t)
y′(t)

)

=

(
y′(t)

)2

y(t)
+

x′(t)y′(t)
x(t)

, t ∈ [0, 1]. (19b)

In order to find all the trajectories γ ∈ C2 that pass an arbitrary point

(x0, y0) ∈ R2
+ different cases must be considered. Let

γ(t)T = (x(t), y(t)), t ∈ [0, 1],

be the solution with the following initial values:

γ(0)T = (x(0), y(0)), γ′(0)T = (x′(0), y′(0)).

(i) Assume that x′(0) 6= 0, y′(0) 6= 0 and C = x′(0)y(0) − y′(0)x(0) 6= 0, i.e.,

x′(0)
x(0)

6= y′(0)
y(0)

. Then,

ϕ′′(t)
(ϕ′(t))2

=

(
y(0) + ϕ(t)y′(0)

)
x′(0) +

(
x(0) + ϕ(t)x′(0)

)
y′(0)(

x(0) + ϕ(t)x′(0)
)(

y(0) + ϕ(t)y′(0)
)

=
x′(0)

x(0) + ϕ(t)x′(0)
+

y′(0)
y(0) + ϕ(t)y′(0)

, t ∈ [0, 1]. (20)
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Note that we seek for the solution with ϕ(0) = 0 and ϕ′(0) = 1. By inte-

grating the equation

(
ln ϕ′(t)

)′
=

(
ln

(
x(0) + ϕ(t)x′(0)

))′
+

(
ln

(
y(0) + ϕ(t)y′(0)

))′
, t ∈ [0, 1],

(21)

we obtain that

ϕ′(t) =
x(0) + ϕ(t)x′(0)

x(0)
· y(0) + ϕ(t)y′(0)

y(0)
, t ∈ [0, 1], (22)

By using C 6= 0 and the relation

ϕ′(t)
(x(0) + ϕ(t)x′(0))(y(0) + ϕ(t)y′(0))

=
1
C

(
ϕ′(t)x′(0)

x(0) + ϕ(t)x′(0)
− ϕ′(t)y′(0)

y(0) + ϕ(t)y′(0)

)

=
1

x(0)y(0)
, t ∈ [0, 1], (23)

and by integrating (23), we get that there exists a t0 > 0 such that

ϕ(t) =
e

(x′(0)
x(0)

−
y′(0)
y(0)

)
t

− 1
x′(0)
x(0)

− y′(0)
y(0)

e

(
x′(0)
x(0) −

y′(0)
y(0)

)
t
, t ∈ [0, t0]. (24)

It follows that ϕ′(t) > 0, t ∈ [0, t0], consequently, ϕ is strictly increasing.
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(ii) Assume that x′(0) 6= 0, y′(0) 6= 0 and C = x′(0)y(0)− y′(0)x(0) = 0. Then,

from (22),

ϕ′(t)
(
1 +

x′(0)
x(0)

ϕ(t)
)2

= − x(0)
x′(0)

(
1

1 +
x′(0)
x(0)

ϕ(t)

)′
= 1, t ∈ [0, 1]. (25)

By integrating (25), we have that there exists a t0 > 0 such that

ϕ(t) =
t

1− x′(0)
x(0)

t

, t ∈ [0, t0]. (26)

(iii) Assume that x′(0) 6= 0 and y′(0) = 0. Then, from (22),

x′(0)ϕ′(t)
x(0) + ϕ(t)x′(0)

=
(

ln(x(0) + ϕ(t)x′(0))
)′

=
x′(0)
x(0)

, t ∈ [0, 1]. (27)

By integrating (27), we have that there exists a t0 > 0 such that

ϕ(t) =
x(0)
x′(0)

(
e

x′(0)
x(0) t − 1

)
, t ∈ [0, t0]. (28)

(iv) Assume that x′(0) = 0 and y′(0) 6= 0. Exactly as before, we get that

ϕ(t) =
y(0)
y′(0)

(
e

y′(0)
y(0) t − 1

)
, t ∈ [0, t0]. (29)
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(v) Let x′(0) = 0 and y′(0) = 0. Then, from (20),

ϕ(t) = t, t ∈ [0, 1]. (30)

We remark that the continuation of solution (24) can be determined. If

x′(0)
y′(0)

< 0, then ϕ exists on (−∞,∞); if
x′(0)
y′(0)

> 1, C > 0, then ϕ exists on

(−∞, t̂), t̂ > 0; if 0 <
x′(0)
y′(0)

< 1, C > 0, then ϕ exists on (t̃,∞), t̃ < 0; if

x′(0)
y′(0)

> 1, C < 0, then ϕ exists on (t̄,∞), t̄ < 0; if 0 <
x′(0)
y′(0)

< 1, C < 0, then ϕ

exists on (−∞, t∗), t∗ > 0; and the values t̂, t̃, t̄, t∗ can be calculated.

3. Convex image transformable functions

An important subclass of the smooth pseudoconvex functions consists of the con-

vex twice continuously differentiable (C2) functions obtained by one-to-one increas-

ing image transformations belonging to the convex image transformable functions,

or in other terminology, the G-convex functions. A famous result, the first complete

set of necessary and sufficient conditions for the convexifiability of C2 functions was
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derived by Fenchel (Refs. 5,8) developed further in different directions, the detailed

analysis of which can be found in the literature, see, e.g, Avriel et al. (Ref. 6). In

this part, the main result is a new geometric characterization of the smooth convex

image transformable functions, based on the space of paths. Let Imf (A) denote

the image of the function f on the set A ⊆ Rn.

Definition 3.1. A nonconvex function is convex image transformable if it can

be transformed into a convex function by a one-to-one increasing or decreasing

transformation of its image (their ranges).

Theorem 3.1. Let f ∈ HlL be a real-valued function defined on an open convex

set A ⊆ Rn. Then, f is convex image transformable by a one-to-one increasing

function φ ∈ C2(Imf (A), R) iff for every x ∈ A, there exists a convex neighborhood

U(x) ⊆ A such that for every pair (x,y = z−x), z ∈ A, the single variable function

f
(
x + ϕ(x,y)(t)y

)
, x + ϕ(x,y)(t)y ∈ U(x), t ∈ [0, 1], (31)

is convex where ϕ(x,y) : [0, 1] → R, ϕ(x,y)(0) = 0, ϕ′(x,y)(0) = 1, is a strictly
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increasing function given by the following differential equation:

ϕ′(x,y)(t) =
1

φ′
(
f(x)

)φ′
(
f(x + ϕ(x,y)(t)y)

)
, t ∈ [0, 1]. (32)

Moreover, if φ : A → R+, and

∇f(x)y > 0, (33)

then, ϕ(x,y) is strictly convex.

The proof of the theorem is based on two lemmas. In the following well-known

characterization of the convex image transformable functions, twice differentiability

is used.

Lemma 3.1. Let A ⊆ Rn be an open convex set and f ∈ C2(A,R). Then,

f is convex image transformable by a one-to-one increasing or decreasing function

φ ∈ C2(Imf (A), R) iff the matrices

Hφ(f(x)) = φ′(f(x))Hf(x) + φ′′(f(x))∇f(x)T∇f(x), x ∈ A, (34)

are positive semidefinite on A, where ∇f and Hf denote the gradient (row) vector

and the Hessian matrix, respectively.
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Lemma 3.2. Let A ⊆ Rn be an open convex set and f : A → R, f ∈ HlL

or −f ∈ HlL. Then, f is (strictly) convex image transformable by a one-to-

one increasing or decreasing function φ ∈ C2(Imf (A), R) iff there exists a locally

Lipschitz function θ ∈ C(Imf (A), R) such that f ∈ HlL or −f ∈ HlL with the

function ψ(x) = θ(f(x)), x ∈ A.

Proof.

(I.) Let the function f be convex image transformable by a one-to-one increasing

or decreasing function φ ∈ C2(Imf (A), R). Then, by Lemma 3.1, f ∈ HlL iff φ is

increasing, and −f ∈ HlL iff φ is decreasing, moreover,

ψ(x) = θ(f(x)) =
φ′′(f(x))
φ′(f(x))

, x ∈ A, (35)

in the former case, and

ψ(f(x)) = θ(f(x)) = −φ′′(f(x))
φ′(f(x))

, x ∈ A, (36)

in the latter case.
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(II.) Let f ∈ HlL or −f ∈ HlL with a θ(f(x)), x ∈ A. It will be shown in the

increasing case that the function f ∈ C2(A,R) is (strictly) convex image trans-

formable by

φ(t) = C1

∫
e
∫

θ(τ)dτdt + C2, t ∈ Imf (A), C1 > 0, C2 ∈ R. (37)

By Lemma 3.1, it is sufficient to prove that the differential equation

φ′′(t)
φ′(t)

= θ(t), t ∈ Imf (A), (38)

can be explicitly solved. Since,

φ′′(t)
φ′(t)

=

{
(
ln φ′(t)

)′ if φ′(t) > 0,

(
ln(−φ′(t)

)′ if φ′(t) < 0,

t ∈ Imf (A),

φ′(t) = C1e
∫

θ(t)dt, t ∈ Imf (A), C1 > 0,

φ(t) = C1

∫
e
∫

θ(τ)dτdt + C2, t ∈ Imf (A), C1 > 0, C2 ∈ R,

the statement is proved. The proof of the decreasing case (−f ∈ HlL) is similar.

¤
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Proof of Theorem 3.1. Let A ⊆ Rn be an open convex set and f : A → R, f ∈ HlL.

Then, by Lemma 3.2, f is (strictly) convex image transformable by a one-to-one

increasing function φ ∈ C2(Imf (A), R) iff f ∈ HlL with a function ψ(x) = θ(f(x)),

x ∈ A, where θ ∈ C(Imf (A), R) is a locally Lipschitz function.

By Theorem 2.2, formulas (5), (6) and (7) are valid, therefore, by (35) and (38),

the following differential equation holds:

(
− 1

ϕ′(x,y)(t)

)′
=

φ′′
(
f(x + ϕ(x,y)(t)y)

)

φ′
(
f(x + ϕ(x,y)(t)y)

)∇f
(
x + ϕ(x,y)(t)y

)
y, t ∈ [0, 1],

(39)

which is equivalent to

(
ln ϕ′(x,y)(t)

)′
=

(
ln φ′

(
f(x + ϕ(x,y)(t)y)

))′
, t ∈ [0, 1], (40)

from which

ϕ′(x,y)(t) =
1

φ′
(
f(x)

)φ′
(
f(x + ϕ(x,y)(t)y)

)
, t ∈ [0, 1], (41)

which is the statement. ¤
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Example 3.1. If

f(x, y) = xy, (x, y) ∈ R2
+, φ(t) = − ln t, t ∈ (0, +∞),

where φ is a one-to-one decreasing image transformation function and R2
+ denotes

the positive orthant in R2, then,

φ′(t) = −1
t
, t ∈ (0, +∞).

By using the notations of Example 2.1, from (32) we obtain that

ϕ′(t) =
x(0)y(0)(

x(0) + ϕ(t)x′(0)
)(

y(0) + ϕ(t)y′(0)
) , t ∈ [0, 1]. (42)

We remark that equation (40) is the inverse of (22) because the image transforma-

tion is decreasing.

4. Concluding remarks

In the paper, it is shown that the smooth convex and the smooth convex image

transformable functions, as well as a new subclass of the pseudoconvex functions
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are of the same character and can be originated from the geometry of paths based

on smooth manifolds. The common root is that these types of convexity are of

geodesic convexity, but while convexity is related to line segments, the geodesic

segments of the Euclidean metric, convex image transformability and a subclass of

pseudoconvexity to a system of paths generated by a linear connection determined

by the gradient of the given function and the image transformation or a locally Lip-

schitz function, respectively. An important remark is that these convexity notions

are based on the differentiable structure of the manifolds but not on the metric

structure. The main result related to convex image transformability is a new geo-

metric solution of the Fenchel problem of level sets in the smooth case. An open

question is how to weaken the assumptions of this result.

Some further open questions are as follows:

(Q1) How large is the difference between pseudoconvex and convex functions?

(Q2) How can the geometric characterization of HlL be extended to Hc?

HlL ⊂ Hc?
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(Q3) How to characterize the subclass of the pseudoconvex functions where the

single variable functions determined by (5), (6) and (7) are not only locally,

but globally convex in the given convex set?

(Q4) How to solve the Fenchel problem of level sets in the case of neither closed

nor open convex sets?
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