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Abstract. In the paper, some properties of the spaces of paths are studied in

order to define and characterize the local convexity of sets belonging to smooth

manifolds and the local convexity of functions defined on the local convex sets of

smooth manifolds.
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1. Introduction

A convex function has convex less-equal level sets. That the converse is not

true was realized by de Finetti (Ref. 1). The problem of level sets, formulated and

discussed first by Fenchel in 1951 (Ref. 2), is as follows (see, p.117): Under what

conditions is a nested family of closed convex sets the family of the level sets of a

convex function?

Fenchel (Refs. 2-3) gave necessary and sufficient conditions for a convex function

with the prescribed level sets, furthermore, for a smooth convex function under

the additional assumption that the given subsets are the level sets of a twice con-

tinuously differentiable function. In the first case, seven conditions were deduced,

and while the first six are simple and intuitive, the seventh is rather complicated.

This fact and the additional assumption in the smooth case, according to which the

given subsets are the level sets of a twice continuously differentiable function, seem

to be the motivation that Roberts and Varberg (Ref. 4, p.271) raised the following

question of level sets among some unsolved problems: ”What ”nice” conditions on
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a nested family of convex sets will ensure that it is the family of level sets of a

convex function?”

The Fenchel problem of level sets consists of some different subproblems. If

the union of the level sets A ⊆ Rn is a convex set, then a quasiconvex function

can be constructed with the prescribed level sets (Fenchel, Ref. 2), so the original

question now reads as finding conditions under which the level sets of a quasiconvex

function are those of a convex function. In the case of a convex set A ⊆ Rn and a

continuous quasiconvex function, the question is to characterize the convex image

transformable functions.

In the theory of economics, Debreu (Ref. 5) proved his famous theorem on the

representation of a continuous and complete preference ordering by a utility func-

tion. In economics, it should be important to express a continuous, complete and

convex preference ordering by a concave utility function, or in other words, to

transform a continuous quasiconcave function into a concave function preserving

the same upper-level set mapping. Crouzeix (Ref. 6) and Kannai (Refs. 7-8) studied
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the problem of concavifiability of convex preference orderings, i.e., the problem of

the existence of a concave function having the same level sets as a given continuous

quasiconcave one, and they developed the Fenchel results further.

In the smooth case, the original problem is divided into two parts. The first

one is to give conditions for the existence of a smooth pseudoconvex function with

the prescribed level sets, while the second one is to characterize the smooth convex

image transformable functions.

Rapcsák (Ref. 9) gave an explicit formulation of the gradient of the class of the

smooth pseudolinear functions, which results in the solution of the first part of the

Fenchel problem in the case of a nested family of convex sets whose boundaries are

of hyperplanes defining an open convex set. This result was generalized by Rapcsák

(Refs. 10-11) for the case where the boundaries of the nested family of convex sets

in Rn+1 are given by n-dimensional differentiable manifolds of class C3 and the

convex sets determine an open or closed convex set in Rn+1.

A first complete set of necessary and sufficient conditions for the second part of
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the level set problem was derived by Fenchel (Refs. 2-3). Later, several contributions

were published by different authors and these results are presented within a unified

framework in the book of Avriel et al. (Ref. 12).

In the paper of two parts, a new and “nice” geometric necessary and sufficient

condition will be given for the existence of a smooth convex function with the

level sets of a given smooth pseudoconvex function, which is a new solution for

the second part of the Fenchel problem of level sets in the smooth case. The

main theorem is proved by using a general differential geometric tool, the geometry

of paths defined on smooth manifolds which is the subject of the first part of

the paper. This approach provides a complete geometric characterization of a

new subclass of pseudoconvex functions originated from analytical mechanics, an

extension of the local-global property of nonlinear optimization to nonconvex open

sets, a powerful tool - the linear connection which does not depend on either the

original data or a Riemannian metric - to improve the structure of a function or

a problem from optimization point of view, and a new view on the convexlike
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and generalized convexlike mappings in the image analysis (see, e.g., Giannessi,

Refs. 13-14; Mastroeni et al., Ref. 15).

In Section 2, some properties of the spaces of paths are studied in order to define

and characterize the local convexity of sets belonging to smooth manifolds and the

local convexity of functions defined on the local convex sets of smooth manifolds.

2. Space of paths

Let M be a smooth (C2) n-dimensional connected manifold and m a point in

M . The tangent space TMm at m is an n-dimensional vector space. A 2-covariant

tensor at m is a real-valued 2-linear function on TMm×TMm. A 2-covariant tensor

is positive semidefinite (definite) at a point m ∈ M if the corresponding matrix is

positive semidefinite (definite) on TMm × TMm in any coordinate representation.

A 2-covariant tensor field is positive semidefinite (definite) on a set A ⊆ M if it is

a positive semidefinite (definite) tensor at every point of A. A path γ on M is a

smooth mapping γ : [0, 1] → M . The space of paths is based on the differentiable

structure of the manifold.
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Definition 2.1. The mapping Γ is a linear connection on an open subset A of

M if

(i) a set of n3 smooth (at least continuously differentiable) functions

Γl3
l1l2

, l1, l2, l3 = 1, . . . , n,

is given in every system of local coordinates on A, and

(ii) the sets of functions Γl3
l1l2

and Γ̄l3
l1l2

, l1, l2, l3 = 1, . . . , n, given in a coordinate

representation x and u, respectively, are transformed by the rule

Γl3
l1l2

= Γ̄k3
k1k2

∂xl3

∂uk3

∂uk1

∂xl1

∂uk2

∂xl2

+
∂2ul3

∂xl1∂xl2

∂xl3

∂uk3

,

for all l1, l2, l3, k1, k2, k3 = 1, . . . , n,

(1)

where two coinciding indices mean summation.

Definition 2.2. A Γ-geodesic, i.e., a geodesic of a linear connection Γ on an open

set A ⊆ M is a path each coordinate expression of which satisfies the differential

equations

x′′l3(t) + Γl3
l1l2

(x(t))x′l1(t)x
′
l2(t) = 0, t ∈ [0, 1], l3 = 1, . . . , n. (2)
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Let

Γ =




Γ1

Γ2

...
Γn


 ,

where Γi, i = 1, . . . , n, are n × n matrices, then the Γ-geodesics can be given in a

coordinate neighbourhood as follows:

x′′(t) = −x′(t)T Γ(x(t))x′(t), t ∈ [0, 1]. (3)

By the theory of differential equations, equation (3) has a solution at every point

and in every direction. Let Rn, R, R+, R≥, be the n-dimensional Euclidean space,

the 1-dimensional Euclidean space consisting of the real numbers, the positive real

numbers and the nonnegative real numbers, respectively.

Definition 2.3. Let Γ be a linear connection on an open subset A ⊆ M . Then,

A is Γ-convex if for all m1,m2 ∈ A there exists a Γ-geodesic γ such that γ(0) = m1,

γ(1) = m2 and γ ⊆ A.

A function f : A → R is (strictly) Γ-convex on a Γ-convex set A if it is (strictly)
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convex along all the Γ-geodesics belonging to A.

By the definition, the following inequalities hold for every Γ-geodesic belonging

to A and joining two arbitrary points m1,m2 ∈ A:

f
(
γ(t)

) ≤ (1− t)f
(
γ(0)

)
+ tf

(
γ(1)

)
, t ∈ [0, 1], (4)

where γ(0) = m1, γ(1) = m2.

If Γl3
l1l2

= 0, l1, l2, l3 = 1, . . . , n, then the Γ-convex set A ⊆ Rn is a convex set

and the Γ-convex function f : A → R is a convex function on A, where

γ(t) = m1 + t(m2 −m1), t ∈ [0, 1]. (5)

A function f : A → R defined on a Γ-convex set A ⊆ M is (strictly) Γ-concave if

−f is (strictly) Γ-convex.

Geodesic convexity derived from Riemannian metrics on Riemannian manifolds

were studied in details from differential geometric point of view in Udriste (Ref. 16)

and from optimization theoretical point of view in Rapcsák (Ref. 11). Here, these

approaches are developed further. The following statements are direct generaliza-
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tions of the results related to geodesic convexity.

Lemma 2.1.

(i) If A ⊆ M is a Γ-convex set and gi : A → R, i = 1, . . . , l, are Γ-convex

functions, then the intersection of the level sets

∩l
i=1Agi(m0) = {m ∈ A | gi(m) ≤ gi(m0), m0 ∈ A}, i = 1, . . . l, (6)

is a Γ-convex set.

(ii) If A ⊆ M is a Γ-convex set and gi : A → R, i = 1, . . . , l, are Γ-convex

functions, then the nonnegative linear combinations of the Γ-convex func-

tions are Γ-convex on A.

(iii) If A ⊆ M is a Γ-convex set, f : A → R a Γ-convex function and φ : R → R

a nondecreasing convex function, then φf is Γ-convex on A.

Theorem 2.1. If A ⊆ M is a Γ-convex set and f : A → R a Γ-convex function,

then a local minimum of f is a global minimum.

Definition 2.4. Let Γ be a linear connection on an open subset A ⊆ M . Then,

A is locally Γ-convex if a neighborhood U(x) of every point x ∈ A exists such
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that all the pairs of points m1, m2 ∈ U(x) can be joined by a unique Γ-geodesic

belonging to U(x), i.e., γ(0) = m1, γ(1) = m2 and γ ⊆ U(x).

A function f : A → R is locally (strictly) Γ-convex on A if A is a locally

Γ-convex set and f is (strictly) convex along all the Γ-geodesics belonging to a

Γ-convex neighborhood of every point of A.

The next statement demonstrates the importance of Definition 2.4.

Theorem 2.2. Whitehead theorem (Ref. 17). Let W (M ; Γ) be the set of

all geodesics of some linear connection Γ on a smooth n-dimensional manifold M .

Then, M is locally convex with respect to W (M ; Γ), i.e., M is locally Γ-convex.

Theorem 2.3. If A ⊆ M is an open set, f : A → R, a differentiable function,

and Γ is a linear connection on A, then f is locally (strictly) Γ-convex on A iff

for every pair of points m1 ∈ A, m2 ∈ A in any Γ-convex neighborhood, and a

connecting geodesic γ(t), t ∈ [0, 1], γ(0) = m1, γ(1) = m2,

f(m2)− f(m1)(>) ≥ df(m1)
dt

, (7)
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where df(m1)
dt denotes the derivative of df(γ(t))

dt at the point 0.

Proof. By Definition 2.4, a function f is locally (strictly) Γ-convex on A if A is

a locally Γ-convex set and f is (strictly) convex along all the Γ-geodesics belong-

ing to a Γ-convex neighborhood of every point of A. Since A is an open set, by

the Whitehead theorem, A is locally Γ-convex. Thus, it is sufficient to verify the

statement only in an arbitrary Γ-convex neighborhood.

The local (strict) Γ-convexity of f in a Γ-convex neighborhood means the (strict)

convexity of the single variable function along the connecting Γ-geodesic for every

pair of points in this Γ-convex neighborhood. By the first-order characterization, a

differentiable function f(γ(t)), t ∈ [0, 1], is (strictly) convex iff formula (7) holds,

from which the statement follows. ¤

By formula (7), the local (strict) Γ-convexity of the function f is equivalent

to the local Γ-invexity (Ref. 18), moreover, in the case of every pair of points

(m1,m2) ∈ A×A, the invexity map satisfies η(m1,m2) ∈ TMm1 and it is equal to
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the tangent vector at m1 of the Γ-geodesic joining the points m1 and m2.

Definition 2.5. A point m of the n-dimensional manifold M is said to be a

critical (stationary) point of the smooth map f : M → R if the derivative of the

function f at that point is equal to zero.

Corollary 2.1. Let A ⊆ M be an open Γ-convex set and f : A → R a differ-

entiable (strictly) Γ-convex function. Then, every stationary point of f is a (strict)

global minimum point. Moreover, the set of global minimum points is Γ-convex.

Monotonicity notion studied for geodesic convex functions by Udriste (Ref. 16)

can be directly applied to Γ-convex functions.

Definition 2.6. Let A ⊆ M be an open set, and f : A → R a differentiable

function. Then, df
dt is locally (strictly) Γ-monotone on A if, for every pair of

points m1 ∈ A, m2 ∈ A, in any Γ-convex neighborhood, and a connecting geo-

desic γ(t), 0 ≤ t ≤ 1, γ(0) = m1, γ(1) = m2,

df(m1)
dt

− df(m2)
dt

(<) ≤ 0. (8)
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If M = Rn, or we consider a coordinate representation, then the (strict) Γ-

monotonicity of df
dt means that

∇f(m1)γ′(0)−∇f(m2)γ′(1)(<) ≤ 0, (9)

where the row vector ∇f denotes the gradient of the function f .

Theorem 2.4. Let A ⊆ M be an open set, and f : A → R a differentiable

function. Then, f is locally (strictly) Γ-convex on A iff df
dt is locally (strictly)

Γ-monotone on A.

Let us introduce the notation

V T Γ =
n∑

i=1

viΓi, (10)

where the vector V = (v1, . . . , vn)T belongs to an n-dimensional vector space, and

let C2(A,R) denote the set of all twice continuously differentiable functions of A

into R.

Definition 2.7. The covariant derivative of a smooth function on the manifold

M is equal to the derivative in any coordinate representation. A vector field V is
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defined on the manifold M as a smooth map V : M → Rn such that V (m) ∈ TMm

for all m ∈ M . The covariant derivative with respect to a linear connection Γ on a

covariant vector field V is equal to

DΓV = JV − V T Γ, (11)

in any coordinate representation where JV denotes the Jacobian matrix of the

corresponding vector field at each point of an arbitrary coordinate neighborhood.

Theorem 2.5. If A ⊆ M is an open set, f ∈ C2(A,R), and Γ is a linear

connection on A, then f is locally (strictly) Γ-convex on A iff the second covariant

derivative tensorfield D2
Γf of the function f with respect to Γ is (strictly) positive

semidefinite on A.

Proof. By Definition 2.4, a function f is locally (strictly) Γ-convex on A if A is a

locally Γ-convex set and f is (strictly) convex along all the Γ-geodesics belonging

to a Γ-convex neighborhood of every point of A. Since A is an open set, by the

Whitehead theorem, A is locally Γ-convex. Thus, it is sufficient to verify the state-
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ment only in an arbitrary Γ-convex neighborhood.

Consider an arbitrary coordinate representation x(u), u ∈ U ⊆ Rn, of the man-

ifold M in any Γ-convex neighborhood U of A. Then, a Γ-geodesic joining two

arbitrary points in this neighborhood can be given in the form of x(u(t)), t ∈ [0, 1].

Since all the geodesics joining two arbitrary points in this neighborhood can be

extended to an open interval (t1, t2), thus the Γ-convexity of the single variable C2

function f(x(u(t))), t ∈ (t1, t2), is equivalent to the nonnegativeness of the second

derivative at every point.

By differentiating twice the function f(x(u(t))), t ∈ (t1, t2), we obtain that

d

dt
f(x(u(t))) = ∇xf(x(u(t)))Jx(u(t))u′(t),

d2

dt2
f(x(u(t))) = u′(t)T Jx(u(t))T Hxf(x(u(t)))Jx(u(t))u′(t)+

∇xf(x(u(t)))
(
u′(t)T Hux(u(t))u′(t)

)
+∇xf(x(u(t)))Jx(u(t))u′′(t).

(12)

As the curve x(u(t)), t ∈ (t1, t2), is a geodesic, we can substitute the following
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system of differential equations for u′′(t):

u′′(t) = −u′(t)T Γ(u(t))u′(t), t ∈ (t1, t2), (13)

where the n × n × n matrix Γ contains the second Christoffel symbols and

u′(t), t ∈ (t1, t2), are the tangent vectors. Considering only geodesics at each

point and in every direction, we obtain that the geodesic Hessian matrix

Hg
uf(x(u)) = Jx(u)T Hxf(x(u))Jx(u)+

∇xf(x(u))Hx(u)−∇xf(x(u))Jx(u)Γ(u),

u ∈ U ⊆ Rn,

(14)

where the matrix multiplication Jx(u)Γ(u), u ∈ U ⊆ Rn, is defined by the

rule related to the multiplication of a row vector and a 3-dimensional matrix,

applied consecutively for every row vector of Jx(u) (see formula 10). Note

that the result does not depend on the order of the multiplication in the term

∇xf(x(u))Jx(u)Γ(u), u ∈ U ⊆ Rn.
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As the gradient ∇uf(x(u)) is equivalent to the expression

DΓf(x(u)) = ∇xf(x(u))Jx(u), u ∈ U ⊆ Rn, (15)

in any coordinate representation where DΓf denotes the first covariant derivative

of f with respect to Γ which is a covariant vector field, and on a covariant vector

field V , the covariant derivative with respect to Γ is equal to

DΓV = JV − V T Γ,

where JV denotes the Jacobian matrix of the corresponding vector field at each

point of an arbitrary coordinate neighborhood, the right-hand side of expression

(14) is exactly the second covariant derivative of f(x(u)), u ∈ U ⊆ Rn, with respect

to Γ, i.e.,

D2
Γf(x(u)) = Jx(u)T Hxf(x(u))Jx(u)+

∇xf(x(u))Hx(u)−∇xf(x(u))Jx(u)Γ(u),

u ∈ U ⊆ Rn.

(16)

It follows from the smoothness property of the function and the manifold, as well
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as the Whitehead theorem that f is locally (strictly) Γ-convex on A iff the second

covariant derivatives D2
Γf are positive semidefinite in every Γ-convex neighborhood.

By considering the fact that D2
Γf is a tensor at every point, we obtain the statement.

¤

Corollary 2.2. The Γ-convexity property of sets, and functions defined on a

differentiable manifold is invariant under regular nonlinear coordinate transforma-

tions.

We remark that Theorems 2.1., 2.3-2.5 are derived from the corresponding state-

ments in Rapcsák (Ref. 11), and while the second covariant derivative is a tensor

field on M , Γ is not.

Corollary 2.3. If A ⊆ Rn is an open set, f ∈ C2(A,R), and Γ(x),x ∈ A, is

a continuously differentiable linear connection, then a locally (strictly) Γ-convex

function f is (strictly) Γ-convex on A iff the set A is Γ-convex.

In Corollary 2.3, the local-global property of the C2 function f on A is stated,

which can be directly proved for continuous functions following the proof of Theo-
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rem 6.1.2 in Rapcsák (Ref. 11). The local-global property for pseudoconvex func-

tions was first stated by Komlósi (Ref. 19).

Pini (Ref. 18) investigated invexity on manifolds and the relationship, based on

the integrability of the invexity map, between convexity along curves on a manifold

and invexity. This corollary and Theorem 2.2 show that the local-global property,

the invexity and the integrability of the invexity map are equivalent in this frame-

work, therefore, results based on the latter two notions might be considered the

reformulation of the original problem without constructing at least one new family

of curves satisfying the assumptions.

Corollary 2.4. If A ⊆ Rn is an open set, f ∈ C2(A,R), and Γ(x),x ∈ A, is

a continuously differentiable linear connection, then f is locally (strictly) Γ-convex

on A iff the matrices

D2
Γf(x) = Hf(x)−∇f(x)Γ(x), x ∈ A, (17)

are (strictly) positive semidefinite matrices.
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Proof. If M = Rn, then there exists a coordinate representation of Rn such that

Jx(u) = In (the identity matrix in Rn) and Hx(u) is equal to the null matrix for

all u ∈ Rn, thus the formula of D2
Γf derives from (16). ¤

Remark 2.1. Let A ⊆ Rn be an open subset. The linear connection

Γl3
l1,l2

, l1, l2, l3 = 1, . . . , n, is locally Lipschitz if each point of A has a neighbor-

hood such that a constant K exists satisfying

|Γl3
l1,l2

(x1)− Γl3
l1,l2

(x2)| ≤ K||x1 − x2||, l1, l2, l3 = 1, . . . , n,

for all pairs x1,x2 in this neighborhood where the symbol || || denotes the Euclidean

norm.

By the theory of differential equations, the local Γ-convexity of the set A can

be obtained by the locally Lipschitz property of the linear connection which may

substitute the continuous differentiability of the linear connection in Corollary 2.4.

Corollary 2.4 results directly in a condition for the local Γ-convexity of a smooth

function.
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Corollary 2.5. If A ⊆ Rn is an open set, f ∈ C2(A,R), and

∂f
∂xi

6= 0, i = 1, . . . , k, ∂f
∂xi

= 0, i = k + 1, . . . , n, for some 0 ≤ k ≤ n on A,

then f is locally strictly Γ-convex on A with respect to

Γi(x) =
1

k ∂f(x)
∂xi

(Hf(x)− In), i = 1, . . . , k, x ∈ A, (18a)

Γi(x) = In, i = k + 1, . . . , n, x ∈ A. (18b)

3. Concluding remarks

The local convexity of sets based on space of paths belonging to smooth man-

ifolds is investigated, then the local convexity of functions defined on local con-

vex sets is introduced and characterized by using the Whitehead theorem (1932).

A characterization like this may be useful not only in optimization theory, but in

the image analysis of optimization theory, the main principles of which were put

down by Giannessi in 1984 (Ref. 13). Theorems 2.3, 2.4 and 2.5 provide some

results to form a new subclass of the locally convexlike mappings consisting of a

finite number of locally Γ-concave functions with the same linear connection Γ. We
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remark that locally convexlike mappings like these can be constructed by given

linear connections, see, e.g., Corollary 2.4. By Corollary 2.3, a mapping belonging

to this subclass is convexlike iff the set A ⊆ M is Γ-convex with the same linear

connection. It follows that the notion of convexlike mapping defined in the image

space is in connection with the given space and the local-global property.
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